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Fig. 1. Our work enables practical and casual 3D capture with regular dual camera cell phones. Left: A burst of input color-and-depth image pairs that we
captured with a dual camera cell phone at a rate of one image per second. Right: 3D panorama generated with our algorithm in about the same time it took to
capture. The geometry is highly detailed and enables viewing with binocular and motion parallax in VR, as well as applying 3D effects that interact with the
scene, e.g., through occlusions (right).

We present an algorithm for constructing 3D panoramas from a sequence of

aligned color-and-depth image pairs. Such sequences can be conveniently

captured using dual lens cell phone cameras that reconstruct depth maps

from synchronized stereo image capture. Due to the small baseline and

resulting triangulation error the depth maps are considerably degraded and

contain low-frequency error, which prevents alignment using simple global

transformations. We propose a novel optimization that jointly estimates the

camera poses as well as spatially-varying adjustment maps that are applied

to deform the depth maps and bring them into good alignment. When fusing

the aligned images into a seamless mosaic we utilize a carefully designed

data term and the high quality of our depth alignment to achieve two or-

ders of magnitude speedup w.r.t. previous solutions that rely on discrete

optimization by removing the need for label smoothness optimization. Our

algorithm processes about one input image per second, resulting in an end-

to-end runtime of about one minute for mid-sized panoramas. The final 3D

panoramas are highly detailed and can be viewed with binocular and head

motion parallax in VR.
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1 INTRODUCTION
Virtual reality (VR) is a fascinating emerging technology that creates

lifelike experiences in immersive virtual environments, with high-

end headsets now widely available. Most content that is consumed

in VR today is synthetic and needs to be created by professional

artists. There is no practical way for consumers to capture and share

their own real-life environments in a form that makes full use of

the VR technology.

That is perhaps not surprising when considering the formidability

of this problem: we are looking for a method that does not require

expensive hardware and is easy to use even for novice users. Yet,

it should create high-quality and truly immersive content, i.e., a

3D representation that supports binocular vision and head-motion

parallax. Finally, consumers demand very fast processing times, on

the order of seconds at most.

Panoramic images and video can be easily captured now with

consumer 360° cameras. While the surrounding imagery provides

some immersion, the realism is limited due to lack of depth and

parallax. Stereo panoramas [Peleg and Ben-Ezra 1999] provide binoc-

ular depth cues by delivering different images to the left and right

eye, but these images are static and do not provide motion parallax

when the user turns or moves their head.

Full immersion can only be achieved using a 3D representation,

such as the 3D models generated by multi-view stereo methods.

However, when applied to typical panorama datasets, captured

“inside-out” from a single vantage point, these methods have to

deal with a very small baseline, which causes noisy results and

holes in the reconstruction. The methods are also very sensitive

to even slight scene motion, such as wind-induced motion in trees.

The Casual 3D Photography system [Hedman et al. 2017] achieves

some improvement in reconstruction quality, but it is slow with a

runtime of several hours per scene.
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In this paper, we present a new algorithm that constructs 3D

panoramas from sequences of color-and-depth photos produced

from small-baseline stereo dual camera cell phones, such as recent

iPhones. We take these sequences with a custom burst capture app

while casually moving the phone around at a half-arm’s distance.

The depth reconstruction is essentially free since it is integrated into

native phone OS APIs and highly optimized. Using depth maps from

dual camerasmakes our algorithm somewhat robust to scenemotion,

because the synchronous stereo capture enables reconstructing

depth even for dynamic objects, though stitching them might still

result in visible seams.

Our method is fast and processes approximately one input image

per second, about the same time it takes to capture. We stress the

importance of this point, since we found that as our system became

faster, it made our own behavior with regards to capture more

opportunistic: we were suddenly able to capture spontaneously on

the go and even “iterate” on scenes to try different viewing angles.

The output of our algorithm is a detailed 3D panorama, i.e., a

textured, multi-layered 3D mesh that can be rendered with standard

graphics engines. Our 3D panoramas can be viewed with binocular

and head-motion parallax in VR, or using a parallax viewer on

normal mobile and web displays (see the accompanying video for

examples). We can also generate interesting geometric effects using

the 3D representation (Figure 1, right).

We faced two challenges when developing this algorithm, which

lead to our two main technical contributions:

(1) Due to the very small baseline of dual phone cameras depth

estimation is highly uncertain, and it requires strong edge-

aware filtering to smooth the resulting noise. However, this

leads to low frequency errors in the depth maps that prevent

simple alignment using global transformations. We present

a novel optimization method that jointly aligns the depth

maps by recovering their camera poses as well as solving for

a spatially-varying adjustment field for the depth values. This

method is able to bring even severely degraded input depth

maps into very good alignment.

(2) Existing image fusionmethods using discrete optimization are

slow. We utilize a carefully designed data term and the high

quality of our depth alignment to remove the need for label

smoothness optimization, and replace it with independently

optimizing every pixel label after filtering the data term in a

depth-guided edge-aware manner. This achieves a speedup

of more than two orders of magnitude.

After stitching, we convert the 3D panorama into a multi-layered

representation by converting it to a mesh, tearing it at strong depth

edges, and extending the back-layer into occluded regions while

hallucinating new colors and depths. When viewing the panorama

away from the default viewpoint this new content is revealed in

disocclusions.

We demonstrate our algorithm on a wide variety of captured

scenes, including indoor, outdoor, urban, and natural environments

at day and night time. We also applied our algorithm to several

datasets where the depth maps were estimated from single images

using CNNs. These depth maps are strongly deformed from their

ground truth and lack image-to-image coherence, but neverthe-

less our algorithm is able to produce surprisingly well-aligned and

consistent stitched panoramas. A large number of these results is

provided in the supplementary material and accompanying video.

2 PREVIOUS WORK
360° Photo and Video: Using dedicated consumer hardware, such

as the Ricoh Theta, it is now easy to capture full 360° × 180° panora-

mas. Although this is often marketed as capture for VR, it does not

make use of the most interesting capabilities of that technology, and

the lack of binocular and motion parallax limits the realism.

Stereo Panoramas: Binocular depth perception can be enabled by

stitching appropriate pairs of left-eye and right-eye panoramic im-

ages. This representation is often called omnidirectional stereo [An-
derson et al. 2016; Ishiguro et al. 1990; Peleg et al. 2001; Richardt

et al. 2013]. Recent systems enable the capture of stereo panoramic

videos using multiple cameras arranged in a ring [Anderson et al.

2016; Facebook 2016], or using two spinning wide-angle cameras

[Konrad et al. 2017].

Omnidirectional stereo has a number of drawbacks. In particular,

the rendered views are not in a linear perspective projection and

exhibit distortions such as curved straight lines and incorrect stereo

parallax away from the equator [Hedman et al. 2017]. Even more

importantly, the representation does not support motion parallax,

i.e., the rendered scene does not change as the user moves their head,

which considerably limits depth perception, and, hence, immersion.

Parallax-aware Panorama Stitching: Some panorama stitching

methods compute warp-deformations to compensate for parallax in

the input images. While this reduces artifacts, it does not address

the fundamental limitation that this representation does not support

viewpoint changes at runtime.

Zhang and Liu [2014] stitch image pairs with large parallax by

finding a locally consistent alignment sufficient for finding a good

seam. Perazzi et al. [2015] extend this work to the multi-image

case and compute optimal deformations in overlapping regions to

compensate parallax and extrapolate the deformation field smoothly

in the remaining regions. Lin et al. [2016] handle two independently

moving cameras whose relative poses change over time.

Recent work [Zhang and Liu 2015] demonstrates that these ap-

proaches also extend to omni-directional stereo. However, this line

of work has not yet produced explicit 3D geometry, making them

unable to produce head-motion parallax in VR.

Panoramas with Depth: An alternative to generating a left-right

pair of panoramic images is to augment a traditional stitched panoramic

image with depth information. Im et al. [2016] construct a panorama-

with-depth from small baseline 360° video. However, the fidelity

of the depth reconstruction does not seem sufficient for viewpoint

changes (and this has not been demonstrated.) Lee et al. [2016]

use depth information to compute a spatially varying 3D projection

surface to compensate for parallax when stitching images captured

with a 360° rig. However, similar to before mentioned work the

surface is a low-resolution grid mesh. Zheng et al. [2007] create a

layered depth panorama using a cylinder-sweep multi-view stereo

algorithm. However, their algorithm creates discrete layers at fixed

depths and cannot reconstruct sloped surfaces.
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Fig. 2. Breakdown of the major algorithms stages and their outputs, which form the inputs to the next respective stage.

Multi-view Stereo: A long line of research in computer vision

is concerned with producing depth maps or surface meshes from

multiple overlapping images using multi-view stereo (MVS) algo-

rithms [Seitz et al. 2006]. MVS algorithms are used in commercial

photogrammetric tools for 3D reconstruction of VR scenes [Realities

2017; Valve 2016]. Huang et al. [2017] use MVS to obtain dense point

clouds from video sequences captured with a single 360° camera.

MVS methods work best if the camera baseline is large, which

is unfortunately not the case in the panorama capture scenario. In

this case, it is difficult for the methods to deal with the triangulation

uncertainty, which leads to artifacts, such as noisy reconstructions

and missing regions. These methods are usually also slow, with

runtimes ranging from minutes to hours. Hedman et al. [Hedman

et al. 2017] improve the quality of reconstructed 3D panoramas, but

their algorithm requires several hours of processing.

Light Fields: The light field representation [Gortler et al. 1996;

Levoy and Hanrahan 1996] can generate highly realistic views of

a scene with motion parallax and view-dependent effects. Recent

work addresses unstructured acquisition with a hand-held camera

[Davis et al. 2012]. The main disadvantage of this representation

is that it requires a very large number of input views that need

to be retained to sample from at runtime, and a custom rendering

algorithm.

Bundle Adjustment with Depth: The popularisation of consumer

depth cameras has inspired research on aligning and fusing multiple

depth maps into globally consistent geometry [Izadi et al. 2011]. Dai

et al. [Dai et al. 2017b] present system which integrates new depth

maps in real-time, using bundle adjustment on 3D feature point

correspondences to continuously maintain and refine alignment.

There has also been work on non-rigid deformations to refine

alignment with active depth sensors. Zhou and Koltun [Zhou and

Koltun 2014] perform 3D camera calibration during scanning, cor-

recting for non-linear distortion associated with the depth camera.

Whelan et al. [Whelan et al. 2015] show how to correct for drift

by non-rigidly deforming the 3D geometry which has already been

scanned.

In general, methods designed for depth cameras cannot directly

be applied to narrow baseline stereo data, which is of much lower

quality. Unlike the depth maps used in this paper, depth sensors

provide absolute scale, maintain frame-to-frame consistency and

can often be rigidly aligned to a high degree of accuracy.

3 OVERVIEW
The goal of our work is to enable easy and rapid capture of 3D

panoramas using readily available consumer hardware.

3.1 Dual Lens Depth Capture
Dual lens cameras capture synchronized small-baseline stereo image

pairs for the purpose of reconstructing an aligned color-and-depth

image using depth-from-stereo algorithms [Szeliski 2010]. The depth

reconstruction is typically implemented in system-level APIs and

highly optimized, so from a programmer’s and a user’s perspective,

the phone effectively features a “depth camera”. Several recent flag-

ship phones feature dual cameras, including the iPhone 7 Plus, 8

Plus, X, and Samsung Note 8. Such devices are already in the hands

of tens of millions of consumers.

The small baseline is both a blessing and a curse: the limited search

range enables quickly establishing dense image correspondence but

also makes triangulation less reliable and causes large uncertainty

in the estimated depth. For this reason, most algorithms employ

aggressive edge-aware filtering [Barron et al. 2015; He et al. 2010],

which yields smoother depth maps with color-aligned edges, but

large low-frequency error in the absolute depth values. In addition,

the dual lenses on current-generation phones constantly move and

rotate during capture due to optical image stabilization, changes

in focus, and even gravity
1
. These effects introduce a non-linear

and spatially-varying transformation of disparity that adds to the

low-frequency error from noise filtering mentioned above.

1
see http://developer.apple.com/videos/play/wwdc2017/507 at 17:20-20:50, Slides 81-89.
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Stereo image pair (a) iPhone 7+ depth map (b) Monodepth [Godard et al. 2017] (c) DfUSMC depth map [Ha et al. 2016]

Fig. 3. Estimating depth maps using various algorithms. Note relative scale difference and low-frequency deformations between different maps. (a) Small
baseline stereo depth computed by the native iOS algorithm on an iPhone 7+. (b) Single image CNN depth map [Godard et al. 2017]. (c) Depth from accidental
motion result [Ha et al. 2016] (we actually used a short video clip to produce this result).

In Figure 3, you can see depth maps reconstructed using different

stereo algorithms on this kind of data. As revealed in the figure,

there is a significant amount of low-frequency error in the depth

maps. Since our focus is not stereo matching, we use the depth

maps from the native iPhone 7 Plus stereo algorithm for all of our

experiments.

An important detail to note is that many small baseline stereo

methods (including the one running on the iPhone) do not estimate

absolute depth, but instead produce normalized depth maps. So,

aligning such depth map involves estimating scale factors for each of

them, or, in fact, sometimes even more complicated transformations.

3.2 Algorithm Overview
Our 3D panorama construction algorithm proceeds in four stages:

Capture (Section 4.1, Figure 2a): The input to our algorithm is a

sequence of aligned color-and-depth image pairs, which we capture

from a single vantage point on a dual lens camera phone using a

custom burst capture app.

Deformable Depth Alignment (Section 4.2, Figure 2b): Due to the

small camera baseline and resulting triangulation uncertainty, the

input depth maps are not very accurate, and it is not possible to align

them well using global transformations. We resolve this problem

using a novel optimization method that jointly estimates the camera

poses as well as spatially-varying adjustment maps that are applied

to deform the depth maps and bring them into good alignment.

Stitching (Section 4.3, Figure 2c): Next, we stitch the aligned color-

and-depth photos into a panoramic mosaic. Usually this is formu-

lated as a labeling problem and solved using discrete optimization

methods. However, optimizing label smoothness, e.g., using MRF

solvers, is very slow, even when the problem is downscaled. We

utilize a carefully designed data term and the high quality of our

depth alignment, to replace label smoothness optimization with

independently optimizing every pixel after filtering the data term in

a depth-guided edge-aware manner. This achieves visually similar

results with more than an order of magnitude speedup.

Multi-layer Mesh Generation (Section 4.4, Figure 2d): In the last

stage, we convert the panorama into a multi-layered and textured

mesh that can be rendered on any device using standard graphics

engines. We tear the mesh at strong depth edges and extend the

backside into the occluded regions, hallucinating new color and

depth values in occluded areas. Finally, we simplify the mesh and

compute a texture atlas.

4 ALGORITHM

4.1 Capture and Preprocessing
We perform all of our captures with an iPhone 7 Plus using a custom-

built rudimentary capture app. During a scene capture session, it

automatically triggers the capture of color-and-depth photos (using

the native iOS stereo algorithm) at 1 second intervals.

The capture motion resembles how people capture panoramas

today: the camera is pointed outwards while holding the device at

half-arms’ length and scanning the scene in an arbitrary up-, down-,

or sideways motion. Unfortunately, the field-of-view of the iPhone 7

Plus camera is fairly narrow in depth capture mode (37
◦
vertical), so

we need to capture more images than we would with other cameras.

A typical scene contains between 20 and 200 images.

The captured color and depth images have 720 × 1280 pixels and

432 × 768 pixels resolution, respectively. We enable the automatic

exposure mode to capture more dynamic range of the scene. Along

with the color and depth maps, we also record the device orientation

estimate provided by the IMU.

Feature extraction and matching: As input for the following align-
ment algorithm, we compute pairwise feature matching using stan-

dardmethods.We detect Shi-Tomasi corner features [Shi and Tomasi

1994] in the images, tuned to be separated by at least 1% of the

image diagonal. We then compute DAISY descriptors [Tola et al.

2010] at the feature points. We use the IMU orientation estimate to

choose overlapping image pairs, and then compute matches using

the FLANN library [Muja and Lowe 2009], taking care to discard

outliers with a ratio test (threshold = 0.85) and simple geometric

filtering, which discards matches whose offset vector deviates too

much from the median offset vector (more than 2% of the image

diagonal). All this functionality is implemented using OpenCV.

4.2 Deformable Depth Alignment
Our first goal is to align the depth maps. Since the images were

taken from different viewpoints, we cannot deal with this in 2D

image space due to parallax. We need to recover the extrinsic camera

poses (orientation and location), so that when we project out the

depth maps they align in 3D.
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(a) Our global affine alignment (Eq. 4) (b) Global alignment to SFM point cloud (c) Our deformable alignment (Eq. 8)

Fig. 4. Aligning depth maps with low-frequency errors. We show stitches and the coefficient of variation (see text) for various methods. (a) Our algorithm with
a global affine model (Eq. 4). Many depth maps got pushed to infinity. (b) Aligning each depth map independently with Eq 4 to a high-quality reconstruction.
The result is better, but there are many visible seams and floaters due to the impossibility to fit the inaccurate depth maps with simple global transformations.
(c) Our algorithm with the spatially-varying affine model yields excellent alignment.

4.2.1 Rigid alignment: We achieve this goal by minimizing the

distance between reprojected feature point matches. Let f iA be a

feature point in image A andM =
{
(f iA, f

i
B )
}
the set of all matched

pairs. We define a reprojection loss as follows:

Ereprojection =
∑

(f iA, f iB )∈M
ρ
( 

PA→B

(
f iA
)
− f iB



2
2

)
, (1)

where ρ(s) = log(1+s) is a robust loss function to reduce sensitivity

to outlier matches, and PA→B (f ) is a function that projects the 2D

point f from image A to image B:

PA→B (f ) = n
(
RTB

(
RA

3D point in camera A’s coord︷   ︸︸   ︷
˜f dA(f ) + tA︸               ︷︷               ︸

3D point in world space

− tB
) )
, (2)

where (RA, tA) and (RB , tB ) are the rotation matrix and translation

vectors for images A and B, respectively, ˜f is the homogeneous-

augmented version of f , dA(f ) is the value of image A’s depth map

at location f , andn
(
[x ,y, z]T

)
= [ xz ,

y
z ]T. Note, that this formulation

naturally handles the wrap-around in 360° panoramas.

Similar reprojection losses are common in geometric computer

vision and have been used with great success in many recent re-

construction systems [Schönberger and Frahm 2016]. However, our

formulation has a subtle but important difference: since we have

depth maps, we do not need to optimize the 3D location of feature

point correspondences. This significantly simplifies the system in

several ways: (1) it drastically reduces the number of variables that

need to be estimated, to just the camera poses, (2) we do not have

to link feature point matches into long tracks, and (3) the depth

maps helps reduce uncertainty, making our system robust to small

baselines and narrow triangulation angles.

Eq. 2 assumes that the camera intrinsics as well as lens deforma-

tion characteristics are known and fixed throughout the capture. If

this is not the case, extra per-camera variables could be added to

this equation to estimate these values during the optimization.

Minimizing Eq. 1 w.r.t. the camera poses is equivalent to optimiz-

ing a rigid alignment of the depth maps. However, since most small

baseline depth maps are normalized (including the ones produced

by the iPhone), they cannot be aligned rigidly.

4.2.2 Global transformations: We resolve this problem by intro-

ducing extra variables that describe a global transformation of each

depth map. Our first experiment was trying to estimate a scale factor

sA for each depth map, i.e., by replacing dA(f ) in Eq. 1 with

dscaleA (f ) = sA dA(f ), (3)

where sA is an extra optimization variable per image. However, this

did not achieve good results, because, as we learned, many depth

maps are normalized using unknown curves. We tried a variety of

other classes of global transformations, and achieved the best results

with an affine transformation in disparity space (i.e., 1/d):

d
affine
A (f ) =

(
sA d−1A (f ) + oA)

)−1
, (4)

sA and oA are per-image scale and offset coefficients, respectively.

Figure 4a shows a typical result of minimizing Eq 1 with the

affine model. Many depth maps are incorrectly pushed at infinity,

because the optimizer could not find a good way to align them

otherwise. In the bottom rowwe visualize the coefficient of variation

of depth samples per pixel, i.e., the ratio of the standard deviation

to the mean. This is a scale-independent way of visualizing the

amount of disagreement in the alignment. As a sanity check we also

tried to independently align each depth map to a high quality SFM

reconstruction of the scene (computed with COLMAP [Schönberger

and Frahm 2016]) that can be considered ground truth (Figure 4b).

Even with this “best-possible” result for the model the stitch is

severely degraded by seams and floaters.
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Through our experimentation we found that it is ultimately not

possible to bring this kind of depth maps into good alignment using

simple global transformations because of to the low frequency error

that is characteristic for small baseline stereo depth maps due to the

triangulation uncertainty.

4.2.3 Deformable alignment: Our solution to this problem is to

estimate spatially-varying adjustment fields that deform each depth

map and can therefore bring them into much better alignment.

We modify the affine model in Eq. 4 to replace the global scale and

offset coefficients with regular grids of 5×5 values that are bilinearly
interpolated across the image.

d
deform
A (f ) =

(
sA(f )d−1A (f ) + oA(f )

)−1
, (5)

where sA(f ) =
∑
iwi (f ) ŝiA, and oA(f ) =

∑
iwi (f ) ôiA, andwi (f ) are

bilinear interpolation weights at position f .
To encourage smoothness in the deformation field we add a cost

for differences between neighboring grid values:

Esmoothness =
∑
A

∑
(i, j)∈N



ŝiA − ŝ
j
A



2
2
+



ôiA − ô
j
A



2
2

(6)

While Ereprojection is agnostic to scale, Esmoothness encourages set-

ting the disparity scale functions ŝiA very small, which results in

extremely large reconstructions. To prevent this, we add a regular-

ization term that keeps the overall scale in the scene constant:

Escale =
∑
A

∑
i

(
ŝiA
)−1

(7)

The combined problem that we solve is:

argmin

{RI ,tI , ŝi , ôi }
Ereprojection + λ1Esmoothness + λ2Escale, (8)

with the balancing coefficients λ1 = 10
6, λ2 = 10

−4
.

Figure 4c shows the improvement achieved by using the de-

formable model. The ground plane is now nearly perfectly smooth,

there are no floaters, and thin structures such as the lamp post are

resolved much better.

4.2.4 Optimization Details: Since Eq. 8 is a non-linear optimiza-

tion problem, we require a good initialization of the variables. We

initialize the camera rotations using the IMU orientations, and

the locations by pushing them forward onto the unit sphere, i.e.,

tA = RA · [0, 0, 1]T. We found it helpful to initialize the deformation

field to enlarge the depth maps, i.e., ŝiA = 0.1, ôiA = 0, because in this

way reprojected feature points are visible in their matched images.

We use the Ceres library [Agarwal et al. 2017] to solve this non-

linear least-squares minimization problem using the Levenberg-

Marquardt algorithm.We represent all rotations using the 3-dimensional

axis-angle parameterization and use Rodrigues’ formula [Ayache

1989] when they are applied to vectors. The optimization usually

converges within 50 iterations, which takes about 10 seconds.

4.2.5 Discussion: Due to the non-rigid transformations in the

optimization the camera poses that we recover are not necessarily

accurate anymore. We inspected the recovered poses visually and

found that they qualitatively look similar to results obtained by SFM,

but we have not performed a careful analysis to verify their degree

of accuracy.
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Fig. 5. Comparing stitching using MRF optimization (top row, runtime 3.25
minutes) vs. our algorithm (bottom row, runtime 0.5 seconds). While labels
change more frequently in our solution, the color and depth mosaics are
visually very similar to the MRF result.

We tried also even richer models than Eq. 4. In particular we have

tried 3D grids that represent bilateral space adjustments with depth

and luminance as range domains. However, while we found slight

improvements in the results we did not deem it significant enough

to warrant the extra complexity.

We also experimented with using 3D distance between matched

features points’ projection into world space in our loss. However,

this did not work well, since a trivial solution is to shrink the scene

until it vanishes.

Eq. 8 is quite robust and does not depend strongly on the initial-

ization. We tried other initializations, e.g., setting tA = [0, 0, 0]T,
which worked fine as well. We have not encountered any scene in

our experiments where the optimization got stuck in a poor local

minimum.

4.3 Stitching
Now that we have 3D aligned depth photos, our next goal is to stitch

them into a seamless panoramic mosaic. This enables removing out-

liers in the depth maps and also makes rendering faster by removing

redundant content.

First, we compute a center of projection for the panorama by trac-

ing the camera front vectors backwards and finding the 3D point

that minimizes the distance to all of them. Then, we render all the

color and depth maps from this central viewpoint into equirectan-

gular panoramas (see supplementary document for details). The full

panoramas are 8192 × 4096 pixels, though for each image, we only

keep a crop to the tight bounding box of the pixels actually used.

As in previous work, we formulate the stitching as a discrete

labeling problem, where we need to select for every pixel p in the

panorama a source image αp from which to fetch color and depth.

4.3.1 Data Term: A “good” sourceαp for the target pixelp should
satisfy a number of constraints, which we formulate as penalty

terms.

Depth Consensus: If a source has the correct depth, it tends to be

consistent with other views. Therefore, we count how many other

views n(p,αp) are at similar depth, i.e., their depth ratio is within

[0.9, 1.1], and define a depth consensus penalty, similar to earlier
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work [Hedman et al. 2017]:

Econsensus
(
p,αp

)
= max

(
1 − n(p,αp)

τconsensus , 0
)
, (9)

where τconsensus = 5 determines how many other depth maps need

to agree before the penalty reaches zero and we consider the labeling

to be completely reliable.

Image Boundaries: We prefer pixels from the image center, be-

cause there the depth maps are more reliable and there is more

space for seam-hiding feathering around them. We define an image

boundary penalty Eboundary(p,αp) that is set to 1 if a source pixel

is close to the boundary in its original image (i.e., within 5% of the

image width), and 0 otherwise.

Saturated Pixels: To maximize detail in the resulting panorama,

we define a term that avoids overexposed source pixels:

Esaturated
(
p,αp

)
=

{
1 if l(p,αp) > τsaturated
0 otherwise,

(10)

where l(p,αp) is the luminance of a source pixel, and τsaturated =
0.98.

Combined Objective: By putting together the previous objectives

we obtain the per-pixel data term:

Edata = Econsensus + λ3 Eboundary + λ4 Esaturated , (11)

with the balancing coefficients λ3 = 1, λ4 = 3.

4.3.2 Optimization: Independently optimizing Eq. 11 for every

pixel is fast, but yields noisy results since labels may change very

frequently. The canonical way to achieving smoother results is to

define a pairwise smoothness term that encourages fewer label

changes that are placed in areas where they tend to be least visible.

However, this makes the problem considerably harder and requires

using slow MRF solvers. For example, Hedman et al. [2017] report

runtimes of several minutes for solving a downscaled stitching

problem.

We found that we can achieve very similar looking results faster

with independent per-pixel optimization, by applying a variant of

cost-volume filtering [Hosni et al. 2013] which first filters the data

term with a depth-guided edge aware filter:

Esoft-data
(
p,αp

)
=
∑

∆∈W α
d

wα
d
(
p,p + ∆

)
· Edata

(
p,αp

)
. (12)

However, instead of using a single global guide, we determine unique

filter weightswα
d for each source image α using a guided filter [He

et al. 2010], guided by the normalized disparities in α . In our experi-

ments, we use a filter footprint that spans 2.5% of the image width

and set the edge-aware parameter ϵ = 10
−7
.

In Figure 5 we compare our result with an MRF solution using

the color and disparity smoothness terms defined by Hedman et

al. [2017]. While our stitch exhibits more frequent label changes the

stitched color and depth mosaics are visually very similar.

4.3.3 Color Harmonization: Since we capture images with auto-

exposure enabled, we need to align the exposures to create a seam-

less panorama. Following the insight from Reinhard et al. [2001], we

convert the images to the channel-decorrelated CIELAB color space,

(a) Naïve mesh (b) Naïve mesh + tears (c) Multi-layer mesh

Fig. 6. (a) Naïvely meshing by connecting all vertices yield stretched trian-
gles at depth edges. (b) Tearing the mesh avoids this, but reveals holes. (c)
Our multi-layer meshes extend the back-side at depth edges smoothly into
the occluded region and reveal inpainted colors and depths.

and then process each channel independently. We solve a linear sys-

tem to compute global affine color-channel adjustments (i.e., scale

and offset) for each source image, such that the adjusted color values

in the overlapping regions agree as much as possible. We further

reduce visible seams by feathering the label region boundaries with

a wide radius of 50 pixels. In a supplementary document we provide

more implementation details.

4.4 Multi-layer Processing
The final step of our algorithm is to convert the panorama into a

triangle mesh that can be rendered on any device using standard

graphics engines. Naïvely creating a triangle mesh by connecting all

pixels to their 4-neighbors yields stretched triangles at strong depth

edges that are revealed when the viewpoint changes (Figure 6a). Our

solution resembles somewhat the “two-layer merging” algorithm of

Hedman et al. [2017]. However, an important difference is that our

stitcher does not produce back-surface stitches, since the baseline

is too small to reconstruct significant content in occluded regions

(while we use similar camera trajectories the field of view of our

camera is smaller, hence there is less overlap between images). If

scenes were captured with a wider baseline and/or more wide-angle

camera the two-layer stitch-and-merge algorithm mentioned above

could be adapted at the expense of slower runtime.

In our algorithm, every mesh vertex corresponds to a pixel posi-

tion in the panorama that is “pushed out” to a certain depth. Each

vertex is connected to at most one neighbor in each of the 4 cardinal

directions. Since our goal is to generate multiple layers, there can

be multiple vertices at different depths for a single pixel position.

We initialize the mesh by creating vertices for every panorama pixel

and connecting them to their 4 neighbors.

We start the computation by detecting major depth edges in the

mesh. Since the depth edges are soft and spread over multiple pixels,

we apply a 9× 9median filter to turn them into step edges. Next, we

tear the connection between neighboring vertices if their disparity

differs by more than 5 · 10−2 units. Sometimes the median filter

produces small isolated “floating islands” at the middle of depth

edges. We detect these using connected component analysis and

merge them into either foreground or background, by replacing their

depth with the median of depths just outside the floater. Figure 6b

shows the mesh after tearing it at depth edges.
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Table 1. Breakdown of the algorithm performance per stage for the scene
from Figure 1.

Desktop Laptop
Stage Timing Timing
Feature extraction and matching 6.6s 7.0s

Deformable alignment 9.8s 10.2s

Warping 6.6s 5.1s

Stitching 2.7s 2.6s

Color harmonization 1.6s 1.8s

Multi-layer computation 1.0s 1.1s

Mesh simplification 3.1s 3.5s

Texture atlas generation 3.3s 3.7s

Total 34.7s 35.0s

Next, we hallucinate new content in occluded parts by iteratively

growing the mesh at its boundaries. In every iteration, each vertex

that is missing a connection in one of the 4 cardinal directions

grows in this direction and generates a new vertex at the same depth

as itself. We connect new vertices with all neighboring boundary

vertices whose disparity is within the threshold above. After running

this procedure for a fixed number of 30 iterations, we prune the

newly generated vertices by removing any but the furthest generated
vertex at every pixel location. If the remaining generated vertex is

in front of the original stitch we remove it as well. We synthesize

colors for the newly generated mesh parts using diffuse inpainting.

The resulting mesh smoothly extends the back-side around depth

edges into the occluded regions. Instead of stretched triangles or

holes, viewpoint changes now reveal smoothly inpainted color and

depth content (Figure 6c).

In a supplementary document we provide some implementation

details about simplification and texture atlas generation for the final

mesh.

5 RESULTS AND EVALUATION
We have captured and processed dozens of scenes with an iPhone 7

Plus. 25 of these are included in this submission, see Figure 7, as well

as the accompanying video and the supplementary material. These

scenes span a wide range of different environments (indoor and

outdoor, urban and natural) and capture conditions (day and night,

bright and overcast). The scenes we captured range from about 20

to 200 source images, and their horizontal field-of-view ranges from

60° to 360°.

5.1 Performance
All scenes were processed using a PC with 3.4 GHz 6-core Intel Xeon

E5-2643 CPU and a NVIDIA Titan X GPU and 64 GB of memory.

Our implementation mostly consists of unoptimized CPU code. The

GPU is currently only (insignificantly) used in the warping stage.

We ran our system also on a slower 14” Razer Blade laptop with a

3.3 GHz 4-core Intel i7-7700HQ CPU and a NVIDIA GTX 1060 GPU.

Interestingly, the warping stage performs faster on the laptop, most

likely because CPU computation and CPU/GPU transfers dominate

the runtime. Table 1 breaks out the timings for the various algo-

rithm stages on both of these systems for an example scene. While

our algorithm already runs fast, we note that there are significant

further optimizations on the table. Since the deformable alignment

has proven to be quite robust, we could replace the feature point

detector and descriptor with faster to compute variants, e.g., FAST

features and BRIEF descriptors. The alignment optimization could

be sped up by implementing a custom solver, tailored to this par-

ticular problem. Our current warping algorithm is implemented

in a wasteful way. Properly rewriting this GPU code would make

this operation practically free. The stitching algorithm could be

reimplemented on the GPU.

5.2 Alignment
Figure 8 shows a quantitative evaluation of our alignment algorithm.

We processed the 25 scenes in Figure 7 using different variants of

the algorithm and evaluate the average reprojection error (Eq. 1).

We also evaluate the effect of varying the grid size of our de-

formable model, which shows that the reprojection error remains

flat across a wide range of settings around our choice of 5 × 5.

5.3 Single-image CNN Depth Maps
We experimented with other depth map sources. In particular, we

were interested in using our algorithm with depth maps estimated

from single images using CNNs, since this would enable using our

systemwith regular single-lens cameras (even though the depth map

quality produced by current algorithms is low). In Figure 9 we used

the Monodepth algorithm [Godard et al. 2017] to generate single-

image depth maps for three of our scenes. The original Monodepth

algorithm works well for the first street scene, since it was trained

on similar images. For the remaining two scenes we retrained the

algorithm with explicit depth supervision using the RGBD scans in

the ScanNet dataset [Dai et al. 2017a]. Even though the input depth

maps are considerably degraded our method was able to reconstruct

surprisingly good results. To better appreciate the result quality, see

the video comparisons in the supplementary material.

5.4 SFM and MVS Comparison
We were interested in how standard SFM algorithms would perform

on our datasets. When processing our 25 datasets with COLMAP’s

SFM algorithm 7 scenes failed entirely, in 7 more not all cameras

were registered, and there was 1 were all cameras registered but

the reconstruction was an obvious catastrophic failure. This high

failure rate underscores the difficulty of working with small baseline

imagery.

We also compare against end-to-end MVS systems, in particular

the commercial Capturing Reality system
2
and Casual 3D [Hedman

et al. 2017]. Capturing Reality’s reconstruction speed is impressive

for a full MVS algorithm, but due to the small baseline it is only able

to reconstruct foreground. Casual 3D produces results of compa-

rable quality to ours, but at much slower speed. Figure 10 shows

an example scene, and the supplementary material contains video

comparisons of more scenes.

2
https://www.capturingreality.com
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Alley

(72 images)

Angkor Wat Miniature

(30 images)

Bushes

(26 images)

Footpath

(34 images)

Golden Mount

(28 images)

River Houses

(32 images)

Temple

(59 images)

Temple Yard

(57 images)

Lisbon

(106 images)

Bricks

(88 images)

Plumstead

(88 images)

Skate Park

(78 images)

Snowman

(134 images)

Southbank

(78 images)

Embankment

(53 images)

Tottenham

(91 images)

Ivy

(60 images)

Turtle

(65 images)

Van Gogh Walk

(31 images)

Wood Shed

(153 images)

Wilkins Terrace

(164 images)

Industrial

(203 images)

Hanover Gardens

(91 images)

Forest

(101 images)

Bloomsbury

(147 images)

Fig. 7. Datasets that we show in the paper, video, and supplementary material. The two bottom rows show 360° panoramas.

Global
affine

Affine align-
ment to SFM

Deformable
3x3

Deformable
5x5

Deformable
8x8

Deformable
12x12

rorre noitcejorper egarev
A

Fig. 8. Average reprojection error (Eq. 1, without the robust loss function)
for different alignment methods, as well as our deformable alignment with
different grid sizes.

5.5 Parallax-aware Stitching
We compared our algorithm with two monocular stitching algo-

rithms that handle parallax in different ways. As-projective-as-

possible warping (APAP) [Zaragoza et al. 2013] allows local de-

viations from otherwise globally projective warps to account for

misalignment (Figure 11a). Note, that this does not always suc-

ceed (see detail crop in Figure 11c). Microsoft ICE
3
uses globally

projective warps, but leverages carefully engineered seam finding

and blending to hide parallax errors (Figure 11b and detail crop in

11d). Neither of these methods produce a depth panorama. While

the source depth pixels could be stitched according to the label

3
https://www.microsoft.com/en-us/research/product/

computational-photography-applications/image-composite-editor/

maps produced by these algorithms, this would not lead to good re-

sults, because the source depth maps are inconsistent and show the

scene from different vantage points. Our algorithm resolves these

inconsistencies and produces a coherent color-and-depth panorama

(Figure 10c and detail crop in 11e).

5.6 Capture without Parallax
We evaluated the effect of varying the amount of parallax in the

input images by capturing scenes while rotating the camera around

the optical center without translating (as much as was possible), and

comparing against a normal capture where we move the camera at

half-arm’s length. The resulting panoramas are visually very similar

(see supplementary material). That said, theoretically our method

should break down in the complete absence of parallax because the

reprojection error in Equation 1 will become invariant to depth in

this case. In practice, however, it is very difficult to completely avoid

any parallax in the capture, and, fortunately, the natural way to

capture panoramas is on an arc with a radius of about a half arm’s

length anyway.

5.7 Limitations
Our algorithm has a variety of limitations that lead to interesting

avenues for future work.

Capture: The iPhone camera has a very narrow field-of-view in

depth capture mode, because one of the lenses is wide-angle and

the other a telephoto lens. If both lenses were wide-angle we would

need to capture considerably fewer images to achieve the same
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Example input

CNN depth Global affine (Eq. 4) Independent affine to SFM Deformable (Eq. 8)

CNN depth

Deformable (Eq. 8)

Dual camera depth

Example input

CNN depth

Global affine (Eq. 4) Independent affine to SFM Deformable (Eq. 8)

CNN depth

Deformable (Eq. 8)

Dual camera depth

Example input

CNN depth

Global affine (Eq. 4) Independent affine to SFM Deformable (Eq. 8)

CNN depth

Deformable (Eq. 8)

Dual camera depth

Fig. 9. Applying our algorithm to single-image CNN depth maps (3 middle columns), and comparing to a result for dual camera depth maps (right column).
See the supplementary material for videos of the results.

amount of overlap. At the same time the baseline would increase,

making the reconstruction problem easier.

Artifacts: Our results exhibit similar artifacts as other 3D recon-

struction systems. In particular, these are floating pieces of geom-

etry, incorrect depth in untextured regions, artifacts on dynamic

objects. Compared to existing systems these problems are reduced

(Figure 10), but they are still present. To examine these artifacts

carefully we suggest watching the video comparison in the supple-

mentary material.

Multi-layer processing: The hallucination of occluded pixels is

rudimentary. In particular the simple back-layer extension algorithm

leaves room for improvement. We plan to improve the inpainting

of colors using texture synthesis.

Parameters: Like many end-to-end reconstruction algorithms we

depend on many parameters. We proceeded one stage at a time,

examining intermediate results, when tuning the parameters. All

results shown anywhere in this submission or accompanying mate-

rials use the same parameter settings, provided in the paper.

6 CONCLUSIONS
In this paper we have presented a fast end-to-end algorithm for

generating 3D panoramas from a sequence of color-and-depth im-

ages. Even though these depth maps contain a considerable amount

ACM Transactions on Graphics, Vol. 37, No. 4, Article 101. Publication date: August 2018.
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(a) Capturing Reality (2.1 minutes) (b) Casual 3D (1.8 hours) (c) Our result (34.7 seconds)

Fig. 10. Comparison against MVS systems: (a) Capturing Reality processes fast, but the reconstruction breaks down just a few meters away from the vantage
point due to triangulation uncertainty. (b) Casual 3D produced a high quality result, but it is slow. (c) Our result has even better quality, and was computed
over 200× faster.

(a) APAP [Zaragoza et al. 2013] (b) Microsoft ICE (c) APAP detail (d) ICE detail (e) Our detail

Fig. 11. Comparison against monocular panoramas stitched with (a) As-Projective-As-Possible warping, and (b) Microsoft ICE. Note that these algorithms do
not produce a stitched depth map. (c)-(d) show a detail crops from before mentioned algorithms. (e) corresponding detail crop from our result in Figure 10c.

of low-frequency error, our novel deformable alignment optimiza-

tion is able to align them precisely. This opens up the possibility

to replace discrete smoothness optimization in our stitcher with

depth-guided edge-aware filtering of the data term and indepen-

dently optimizing every pixel, achieving two orders of magnitude

speedup.

We are excited about the many avenues for further improvement

and research that this work opens up. Considering the performance

discussion in Section 5.1 we believe a near-interactive implementa-

tion directly on the phone is within reach.

We have seen already how the availability of a fast capture and

reconstruction system has changed our own behavior with respect

to 3D scene capture. The way we capture scenes has become more

opportunistic and impulsive. Almost all of the provided scenes have

been captured spontaneously without planning, e.g., while traveling.

We are particularly excited about the promising first result using

single-image CNN depth maps. The quality of these depth maps is

still quite low. Yet, our alignment algorithm was able to conflate

them, and stitching them using the consensus data term reduced

artifacts further. Improving these results further is an interesting di-

rection for further research and holds the promise of bringing instant

3D photography to billions of regular cell phones with monocular

cameras.
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