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Abstract

Typical approaches to classification treat class labels as

disjoint. For each training example, it is assumed that there

is only one class label that correctly describes it, and that

all other labels are equally bad. We know however, that

good and bad labels are too simplistic in many scenarios,

hurting accuracy. In the realm of example dependent cost-

sensitive learning, each label is instead a vector represent-

ing a data point’s affinity for each of the classes. At test

time, our goal is not to minimize the misclassification rate,

but to maximize that affinity. We propose a novel exam-

ple dependent cost-sensitive impurity measure for decision

trees. Our experiments show that this new impurity measure

improves test performance while still retaining the fast test

times of standard classification trees. We compare our ap-

proach to classification trees and other cost-sensitive meth-

ods on three computer vision problems, tracking, descriptor

matching, and optical flow, and show improvements in all

three domains.

1. Introduction

Given a set of training examples of the form
{

(x1, y1), ..., (xN , yN )
}

, where xn is a D dimensional fea-

ture vector and yn ∈ {1, ..., C} is its corresponding class la-

bel, the test-time goal of classification is to label an unseen

feature vector x∗ with one of C discrete class labels. In

most classification scenarios, the feature vectors are said to

be disjoint, meaning each observation is assigned to one and

only one class. The disjoint formulation of the classification

problem is well suited to scenarios where each feature vec-

tor can be assigned a discrete class label, e.g. discriminating

between two object categories: dog versus cat.

Cost-sensitive learning is concerned with the situation

where the classification task may not be disjoint [9, 30, 6].

For example, when computing the optical flow field be-

tween a pair of images, we may have access to several dif-

ferent algorithms, each with differing strengths and weak-

nesses. For a given scene, we wish to use the algorithm

that will produce the most accurate result. At test time,

we aim to assign a suitability probability to each algorithm,

representing our belief in their affinity for performing the

given task. Each specialist (or in this case algorithm) is

said to have a task score, a measure of their competence

at performing that task, evaluated against known ground

truth (available only at training time). A lone specialist

might have a significantly higher task score in certain sce-

narios, while in others, multiple specialists could be com-

parably accurate. The key here is that we are not only in-

terested in specialists that score well, but more importantly,

the differences between them. More specifically, in cost-

sensitive classification we are presented with a set of spe-

cialists S , where C = |S|, and a set of training examples
{

(x1,y1), ..., (xN ,yN )
}

, where yn ∈ R
C is our label vec-

tor. Each element of the label vector is a continuous value,

0 ≤ ync ≤ 1, representing specialist c’s task score. Higher

values of ync indicate better accuracy for that data point xn.

Traditional disjoint binary classification can then be seen as

a special case, where yn = (0, 1) or (1, 0).
More concretely, for a given task instance x we wish to

find the specialist c ∈ S that produces the maximum task

score. Therefore we wish to minimize the loss function

Lcs(c, f(c,x)) = 1− f(c,x), (1)

where f(c,x) is the task score for specialist c on task in-

stance x, with a best possible task score of 1, and 0 as the

worst. Given a new x∗ at test time, we wish to assign a pro-

portionally higher suitability probability to specialists that

give superior task scores.

We propose a novel impurity measure for decision trees,

which takes task (i.e. cost) information into account when

measuring the quality of candidate node splits. Unlike other

tree based methods, we explicitly look at the difference be-

tween examples’ costs at a node, and not just their total cost.

Our experiments show how computer vision tasks such as

tracking, descriptor matching and optical flow estimation

can be posed as example dependent cost-sensitive learning

problems. Our novel impurity measure has the benefits of

higher accuracy at test time, simpler decision boundaries,

and fast test time performance, at the expense of a moderate

increase in training time.
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2. Related Work

Cost-sensitive learning covers a broad category of prob-

lems in the machine learning literature. Different works

seek to model various types of costs that arise when build-

ing a classifier. The cost can refer to feature acquisi-

tion [22, 16, 28], where some feature dimensions or com-

ponent algorithms may be more expensive to compute or

acquire than others. There may be different labeling costs

associated with the user, depending on the type of anno-

tations they are asked to provide [25]. In this paper, we

are concerned with the costs associated with misclassifying

different datapoints. Traditionally this problem has been ap-

proached in two different ways: class (CCS) and example

(ECS) dependent cost-sensitive learning. In CCS, costs are

defined using a cost matrix and all misclassifications for a

given class are considered equal e.g. [9, 10]. In ECS, differ-

ent costs are associated with misclassifying each individual

datapoint e.g. [30, 4]. As a result, both standard classifica-

tion and CCS can be seen as special cases of ECS.

Different approaches have been proposed to solve the ex-

ample dependent cost-sensitive learning problem, such as

reweighting the training examples based on their cost [10,

2]. Abe et al. [2] reduce the problem to standard classifi-

cation using a method inspired by example reweighting and

boosting. While rescaling the training points based on their

costs has been shown to be effective for CCS [32], it is not

trivial to apply it to ECS. Jan et al. [15] use multi-criterion

optimization to maximize task scores and minimize the er-

ror rate. Tu and Lin [24] simplified the ECS problem to

a form of one-sided regression, achieving the best results

when compared to several other SVM based methods.

Decision tree based algorithms benefit from very fast

training and test times, being easy to implement, producing

probabilistic outputs, and naturally extending to the multi-

class case. Decision trees can be adapted for many differ-

ent types of machine learning problems such as multivari-

ate regression [8], structured outputs [17], and Hough vot-

ing [12]. There are three main ways in which cost infor-

mation can be incorporated into decision trees during train-

ing. The first option is to alter how the data is sampled.

For the binary ECS case, Zadrozny et al. [31] propose cost-

proportionate rejection sampling with aggregation. A vari-

ant of their method is illustrated on an ensemble of trees

where each tree samples with replacement from the train-

ing data, and samples are drawn proportionately to their

cost. The next option is to alter the class distribution at

each node so it is cost aware. For CCS, Breiman et al. [6]

alter the node posterior by weighting it by the cost vector

for each class (the cost vector is the sum across each col-

umn of the cost matrix for the class of interest). In contrast,

Ting [23] weights each datapoint individually in proportion

to the cost. A drawback of both methods is that they will

create the same trees for different cost matrices if summing

the cost matrix columns happens to produce the same totals.

This perhaps explains the similar performance for multi-

class classification when compared to standard classifica-

tion in [23]. The last option, the one being employed in this

paper, is to create a novel impurity measure that is designed

specifically for the example cost-sensitive case. We directly

exploit the cost differences between the examples at a node,

addressing some of the example- and cost-insensitivity lim-

itations of the previous methods.

While ECS problems are quite common, a lack of ground

truth has made it difficult to assess the performance of dif-

ferent algorithms. For CCS, a small number of real datasets

exist, with cost matrices for problems such as intrusion de-

tection [1] and bacteria classification [15]. This lack of data

meant that experimental validation was typically performed

by artificially generating cost matrices for standard machine

learning datasets based on class frequency in the training

set e.g. [32, 2, 24]. In CCS it is straightforward for human

experts to define cost matrices based on misclassification

costs, e.g. in medical applications with set costs for false

negatives versus false positives for a particular diagnosis.

For ECS, this additional per-datapoint information requires

more annotation effort from the expert. However, increas-

ingly there are classification problems in which these ex-

ample dependent costs are available naturally [13, 18]. In

another recent example, Everts et al. [11] showed that ECS

can be used to choose the best descriptor for a local image

patch. In this paper, we use these datasets to show how ef-

fective use of this cost-sensitive information at training time

improves decision-tree based performance for three differ-

ent algorithm selection tasks.

3. Cost-Sensitive Discriminative Classifier

We propose a novel multi-class example dependent cost-

sensitive classification algorithm, which takes into account

the full label vector information when building the classi-

fier. Our classifier is based on the bagged ensemble Ran-

dom Forests method of Breiman [5]. For a recent overview

of decision tree ensembles, see [8].

3.1. Random Forests

To review, a Random Forest is an ensemble of decision

trees [6], where each tree is trained independently on a ran-

dom subset of the data. Trees are grown recursively from

the root node where at each node, P , a set of random split-

ting decisions is proposed that attempt to separate the data-

points landing at the node into its left (L) and right (R) child

nodes. Decision trees greedily minimize a loss function at

each node to partition the data. Our goal is to minimize the

loss function in (1). The information gain Einf at the node

serves as the quality measure of each potential split [19]. So



among the proposals, the one that maximizes

Einf = I(P )−

(

NL

N
I(L) +

NR

N
I(R)

)

(2)

is chosen, where N , NL and NR are the numbers of ex-

amples that have landed at the parent, left, and right child

nodes respectively. To compute the information gain of (2),

we need to calculate the impurity I(·) at each node. The

goal of the impurity measure is to determine how much dis-

agreement there is among the datapoint labels at that node.

For classification, a node has minimum impurity when all

the data points at the node belong to the same class, and

maximum when they are all equally different. Several dif-

ferent types of impurity measure for classification have been

proposed, such as Gini Igini [6], entropy Ient [20] and mis-

classification rate Imcl. These are calculated as

Igini = 1−
C
∑

c=1

p2c , (3)

Ient = −
C
∑

c=1

pclog2(pc), (4)

Imcl = 1−max (p), (5)

where p is a C dimensional vector, with each entry pc being

the (normalized) empirical frequency of class c at the node.

As illustrated in Section 4, we use Igini as the representative

cost-oblivious impurity measure when growing a forest of

classification decision trees. For our experiments, we will

use the popular Classification-based Random Forest (CLRF)

as our first baseline. For univariate regression Ireg [6], one

aims to minimize the variance of all the continuous response

values that land at a node, so

Ireg =
∑

n∈N∗

(yn − µy)
2. (6)

N ∗ is the subset of datapoints N that landed at the node,

and µy is the mean label value in N ∗. Regression Forests

can be used to select specialists, but we found performance

to be inferior to that of classification, possibly because re-

gression needs more training data.

3.2. Cost­Sensitive Impurity Measure

Standard classification impurity measures cannot utilize

the task scores at training time. Instead, they rely on the

empirical frequency of examples that landed at that node.

We could ignore the task scores (see the CLRF baseline) and

set the class label for a given example xn to the special-

ist that produces the highest task score, c = argmaxc y
n
c .

However, by doing this we are throwing away valuable in-

formation that may improve classification accuracy.

Gini-impurity Cost-Sensitive Random Forest

(GCSRF): The simplest way to use the task scores would

be to adapt the C dimensional class posterior p at each

node. Instead of counting the number of examples from

each class that lands at a node (N ∗), we could use their

task scores directly to weight the normalized frequency

for each class. This altering of the class posterior at the

node has been explored for class dependent cost-sensitive

learning [23, 6]. For this class dependent version, each

element of the modified node posterior is computed as

pc =
∑

n∈N∗

ync /
∑

n∈N∗

C
∑

k=1

ynk . (7)

We can now use these new posteriors in any of the stan-

dard classification impurity measures, and use Gini for this

baseline, for better comparison to the Gini-based CLRF.

PairWise Cost-Sensitive Random Forest (PWCSRF):

In practice, we are interested not in the absolute task scores

for each datapoint, but in the relative difference for each

specialist’s score for that example. We only wish to split

examples when there is a significant difference between the

scores of each of the specialists. With this aim, we define an

impurity measure based on the pairwise difference between

the task scores in the label vector, i.e. how much better is

one specialist than another,

Ics =
1

C2 − C

C
∑

i=1

C
∑

j=1

(fi→j − f2
i→j) ∀i 6= j. (8)

The pairwise specialist empirical frequency fi→j is com-

puted between every pair of classes for every datapoint in

N ∗, resulting in C2 − C comparisons of

fi→j =

∑

n∈N∗

(dni→j)
2

∑

n∈N∗

(dni→j + dnj→i)
. (9)

The difference vector di→j , is a vector of size |N ∗|, where

each element dni→j is the truncated positive difference be-

tween each element of the label vector, so

dni→j =

{

yni − ynj if yni > ynj
0 otherwise.

(10)

At test time, for inference, we then use (7) to represent the

posterior probability for each class at a node.

We will refer to the standard classification Random For-

est with Igini impurity measure as CLRF, the example de-

pendent cost-sensitive forest with Gini impurity using the

cost aware posterior of (7) as GCSRF, and our forest with

pairwise cost-sensitive impurity measure as PWCSRF.

4. Insight Into Proposed Impurity Measure

Figure 1 illustrates the node-impurity binary classifica-

tion curves for different classification impurity measures.



Again, during training, potential splits are accepted or re-

jected for a node in a tree on the basis of the node impurity.

Also displayed are the impurity scores for two example sets

of datapoints, N1 and N2. The label vectors along with im-

purity values for both sets in this toy example are presented

in Table 1. Both sets contain four datapoints, the only dif-

ference being that in N2 one of the datapoints has a very

similar task score for the two specialists (red and green).

For N1, which contains disjoint labels, our newly proposed

cost-sensitive measure Ics simply produces the same impu-

rity as Igini and Icsg (Gini impurity using the cost aware

posterior of (7)). However, in the second scenario, N2, Igini
is very sensitive to tiny changes in the task scores, while Ics
does not punish these small differences. Ics exploits the

fact that the red specialist will give a high task score for

the whole set. This is because for three observations, the

red specialist scores best, and has a very similar score to

the green specialist for the fourth observation. Unlike our

Ics, alternative impurity measures can overlook a good split

because they are over-sensitive to negligible differences in

the label vector (see Table 1). Icsg is sensitive to the abso-

lute value of the task scores. It is unable to look at pairwise

differences, producing a high impurity even when the dif-

ference between specialists is negligible.
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Figure 1. Comparison of node-impurity binary classification

curves for different impurity measures (note that both Ics and Ient
are scaled) for the binary classification problem. The horizontal

axis corresponds to the probability of class 1 while the vertical rep-

resents impurity. Low impurity indicates a good grouping of the

data. Outside the graph, solid colored discs represent datapoints

best described by one of two specialists (red or green), while a

disc with a colored cross indicates only a slight preference for one

over the other. Ics and Igini return the same impurity for the stan-

dard binary classification task N1, while in the non-disjoint case,

N2, Ics recognizes that the red specialist achieves a relatively high

task score, resulting in a much lower impurity.

4.1. Synthetic Example

In the toy example of Figure 2, we generate datapoints

at random from an underlying known distribution. The

ground truth image in A) illustrates the generating distri-

bution, while B) - E) show the results for different algo-

rithms. Here we have two specialists, where datapoints in

the green region are best described by the first specialist

(yn = (1, 0)), in the red by the second specialist (yn =

N1 N2

n y y d1→2 d2→1 y y d1→2 d2→1

1 1 0 1 1 0 1.0 0.00 1 1.0 0.00

2 1 0 1 1 0 1.0 0.00 1 1.0 0.00

3 1 0 1 1 0 1.0 0.00 1 1.0 0.00

4 0 1 2 0 1 0.5 0.51 2 0.0 0.01

Igini 0.3750 0.3750

Icsg × 2 0.3750 0.2558

Ics × 2 0.3750 0.0033

Table 1. Impurity measure comparison for two different sets of

observations N1 and N2, each containing four datapoints. Good

splits should group data to yield low impurity. y represents the

label vector, while y is the index of the specialist with the best task

score. Previous methods quantize the label vector, throwing away

important information [18, 13], making all data look like N1.

(0, 1)), and in the white region can be close to equally han-

dled by either specialist, with some additive Gaussian noise

(yn = (0.5+δ1, 0.5+δ2)). In Figures 2 B) - E), the colored

discs represent training samples. For the white region, the

color of the cross in the center represents the specialist that

is marginally better (may require zooming in). At test time,

we evaluate the probability of each location in the feature

space and illustrate the posterior specialist suitability prob-

ability for each example.

For this illustrative example, we chose the following pa-

rameters: 500 training points, 10 trees, 60 random tests at

each node, and a minimum node count of 3. This results in

26, 25 and 14 average number of nodes per tree for CLRF,

GCSRF and PWCSRF respectively. We observe that CLRF

tends to overfit the data and results in a noisy boundary.

GCSRF maintains uncertainty in the ambiguous region at the

expense of a more complex model. The SVM based OSSVR

of [24] creates a non-linear separation down the middle of

the ambiguous region. PWCSRF favors a simpler, yet loss-

minimizing, decision boundary. Tests on real data follow.

5. Experiments

We validate our cost-sensitive learning algorithm on

three challenging computer vision problems: motion

model selection (with a small number of training exam-

ples) [13], local image descriptor matching (large number

of classes) [11], and optical flow computation (low diver-

sity among the individual specialists for large subsets of the

data) [18]. For each experiment, we compare our Pairwise

Cost-Sensitive Random Forest (PWCSRF) against two base-

lines: the Gini-based Cost-Sensitive Random Forest (GC-

SRF), and the established but naive Classification Random

Forest (CLRF). We grow trees down to a maximum speci-

fied depth, unless the minimum sample count at a node is

reached, and there is no pruning of the final trees. We use

simple axis aligned feature tests at each node, though a va-



A) Ground Truth B) CLRF (Classification Baseline) C) GCSRF (Cost-sensitive Baseline) D) PWCSRF (ours) E) OSSVR

Figure 2. A) Ground truth distribution from which training data points are randomly sampled. Red and green regions indicate areas

of the feature space where one of the two specialists is superior. If an example comes from the white region it is close to equally well

represented by either specialist (white points with colored crosses). B) - D) Results for the different variants of the Random Forest. E) The

cost-sensitive SVM of [24]. Note that suitability probabilities of C) - E) have different complexities and confidence for this toy example,

but are not obviously good or bad.

riety of other tests are possible [8]. Unless otherwise stated,

for bagging we randomly sample with replacement, ensur-

ing an even number of examples from each specialist per

tree. Our label vector contains continuous task score values,

but for each observation with the CLRF, we set the class la-

bel to be the index of the maximum value of yn. Success

is determined not in terms of classification score but task

score. The classification score would only measure how of-

ten the best specialist was chosen, while the task score mea-

sures the real benefit of choosing specialists using a given

model.

5.1. Tracking

Garcia Cifuentes et al. [13] posed motion-model-

selection for tracking image features in video as a classifica-

tion problem. Given an image sequence, and a set of motion

models used to track features in that sequence, the goal is to

choose the motion model which produces the most accurate

tracking score for the whole sequence. For us, each motion

model can be thought of as a specialist. The task score is the

tracking accuracy for that motion model, with higher values

indicating better accuracy.

We use the trajectory feature vector from [13], which is

computed from each image sequence using the descriptor of

Wang et al. [26]. This results in a 4911 dimensional feature

vector. In total, there are 117 datapoints and six different

motion models: Brownian, Constant Velocity, Right, Left,

Forwards and Backwards. As in [13], tracking performance

is measured in terms of track robustness, i.e. correct point

locations when compared to manually clicked ground-truth,

where early failures cost more.

For each of the forest based classifiers, we use the fol-

lowing parameters: 50 trees, 10, 000 random tests at each

node, and a minimum sample count of 3. We train on all

six classes jointly, performing leave one out testing on all

117 examples. This results in a task score of 0.5174 for

our PWCSRF, 0.5172 for the CLRF and 0.4680 for GCSRF

(all averaged over 20 runs). While best among forests, our

score of 0.5174 is lower than the score of 0.5290 achieved

in [13]. We use only simple axis aligned splits in contrast

to their more complex SVMs. The forests are also hampered

by the small amount of available training data.
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Figure 3. Comparison of the different forest based classifiers on

the motion model estimation data from [13]. Higher scores are

better. Our PWCSRF is comparable to CLRF, and both beat the

GCSRF baseline.

5.2. Descriptors

Matching interest points across multiple images is a

challenging problem. Variations in lighting, object prop-

erties, and viewpoint can make it difficult to find the cor-

rect correspondence for a local image patch in another im-

age. Everts et al. [11] acknowledge that there is no one best

descriptor for all scenarios, and choosing the best one is

situation specific. In their work, they attempt to automati-

cally assign the best descriptor for a local image patch using

a classifier trained on multiple image patches with known

ground truth correspondences.

We compare our PWCSRF to [11] using the same Aloi

dataset from [14]. We use the same training and test split

which results in 66K training and 66K test examples. For

each example, there is a 73 dimensional feature vector

which characterizes the local appearance of the patch. The



CLRF REGRF GCSRF PWCSRF OSSVR [24] CSSVM [11]

Precision 0.5675 ±0.0003 0.5770 ±0.0003 0.5849 ±0.0002 0.5878 ±0.0004 0.5922 0.5836

Percent Best 75.33 77.09 78.51 79.02 79.98

Train Time (mins) 0.99 54.12 3.15 31.12 624.35

Test Time (mins) 0.05 0.80 0.03 0.06 47.61

Table 2. Descriptor selection results using data from [11]. The results are averaged over five runs. We can see that OSSVR [24] (with

C = 1000) has superior performance compared to the forest based methods, but at an even larger increase in training time than required

for PWCSRF, and a much longer testing time. Timing and other details of CSSVM performance are not available in [11], but the precision

comes from their Figure 5.

specialists correspond to ten different image descriptors that

could be used to describe the patch. The task scores are the

average precision for each descriptor, with 0 being the worst

and 1 the best. The single descriptor (sBest), which per-

forms best overall on the test set, results in an average pre-

cision of 0.5185, with the worst possible score being 0.1702
and the best 0.7393. Everts et al. [11] use a cost-sensitive

SVM with the one versus all formulation of [31], resulting

in a score of 0.5836. As can be observed in Table 2, both

the GCSRF and PWCSRF improve on this score, while the

CLRF performs poorly. Figure 4 shows how the test results

are affected by tree depth. We set the number of trees to

200, performed 400 random tests at each node, and had a

minimum sample count of 2. In addition, we also compare

ourselves to the multi-class cost-sensitive one-sided support

vector regressor OSSVR of [24], which represents the state

of the art in cost-sensitive support vector classification. Us-

ing a linear kernel OSSVR, we achieve an average precision

of 0.5922 compared to the 0.5878 of our PWCSRF but with a

large additional increase in training time (Table 2). We also

perform a comparison to univariate regression Forests RE-

GRF, where a separate Forest is trained for each specialist

and at test time we choose the winning specialist for a dat-

apoint as the one whos regression Forest predicts the best

task score.

5.3. Optical Flow

Given an image pair and a set of optical flow algo-

rithms, in an earlier work we attempted to determine the

flow algorithm which would result in the lowest error for

each pixel [18]. This was posed as a multi-class classifi-

cation problem and a standard Random Forest was used to

learn the pixel-to-algorithm mapping using a feature vector

computed from the image and proposed optical flow fields.

Here, our specialists correspond to one of C different opti-

cal flow algorithms, with the task score representing the end

point error (EPE) for a given optical flow vector for each of

the algorithms. The EPE for a given specialist, epenc , is the

Euclidean distance between the proposed flow vector and

the ground truth vector, with the lowest error corresponding

to 0 and the worst to ∞. We use a sigmoid function to map
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Figure 4. Comparison of different classification methods for im-

age descriptor algorithm assignment [11]. Higher average preci-

sion values indicate better performance. Forest results are aver-

aged over five runs, and are compared to CSSVM and “sBest”, the

single descriptor that performed best overall.

EPEs to a task score range of [0, 1], where 1 represents the

lowest possible error,

ync = 1− 2

(

1

1 + exp(−λepenc )
−

1

2

)

. (11)

Table 3 presents results for leave one out optical flow ex-

periments on 22 different sequences from [18] and 8 from

[3]. We randomly sample 8, 000 datapoints with replace-

ment from each of the 22 sequences from [18], ensuring

an even distribution of wins for each specialist. The op-

tical flow algorithms chosen as specialists were TV [29],

FL [27], CN [21] and LD [7]. We used 50 trees with a

minimum sample count of 10, 2000 random tests at each

node, maximum possible depth of 20, and set λ = 1.0 for

the sigmoid function, with results showing an average over

three runs. We can see in Table 3 that our PWCSRF produces

the best mean EPE, the largest number of wins, and has the

best overall rank. Surprisingly, the const-insensitive base-

line CLRF comes second in terms of the number of wins. In

Figure 5, we display the effect of varying tree depth for a

subset of the sequences. We observe that beyond a depth



A) 9 Crates1 B) 14 Mayan2 C) 17 Robot D) 125 street1Txtr1

Figure 5. Task score results as a function of tree depth for the different forest based classifiers. Lower values of End Point Error (EPE)

indicate better scores, and while PWCSRF is not always best, it produces lower average EPE overall. A) - D) is a subset of the sequences

from Table 3, and the rest are provided in the supplementary materials. Results are averaged over three runs.

Sequence TV FL CN LD CLRF GCSRF PWCSRF

1 Venus 0.408 0.342 0.229 0.433 0.2800 ±0.005 0.2938 ±0.004 0.2693 ±0.003

2 Urban3 1.132 0.524 0.377 0.600 0.4827 ±0.017 0.5359 ±0.003 0.4805 ±0.004

3 Urban2 0.506 0.444 0.207 0.334 0.3124 ±0.009 0.2804 ±0.009 0.2812 ±0.005

4 RubberWhale 0.135 0.096 0.077 0.120 0.0922 ±0.001 0.1108 ±0.001 0.0933 ±0.001

5 Hydrangea 0.196 0.164 0.154 0.178 0.1590 ±0.001 0.1632 ±0.001 0.1607 ±0.001

6 Grove3 0.745 0.624 0.438 0.657 0.5726 ±0.002 0.5655 ±0.005 0.5773 ±0.006

7 Grove2 0.220 0.169 0.091 0.159 0.1200 ±0.002 0.1400 ±0.001 0.1281 ±0.002

8 Dimetrodon 0.211 0.144 0.115 0.117 0.1447 ±0.003 0.1262 ±0.001 0.1361 ±0.004

9 Crates1 3.464 3.730 3.150 3.104 3.1557 ±0.004 3.1058 ±0.002 3.0952 ±0.013

10 Crates2 4.615 12.572 10.409 2.513 2.9804 ±0.030 2.5558 ±0.036 2.4481 ±0.013

13 Mayan1 2.331 0.727 1.718 5.567 3.7306 ±0.261 4.8670 ±0.320 3.7523 ±0.105

14 Mayan2 0.442 0.344 0.211 0.350 0.2519 ±0.005 0.2528 ±0.003 0.2399 ±0.001

17 Robot 2.335 1.857 1.525 1.212 1.1651 ±0.026 1.0836 ±0.003 1.0517 ±0.009

18 Sponza1 1.006 1.013 1.102 0.917 0.9883 ±0.003 0.9555 ±0.004 0.9785 ±0.000

19 Sponza2 0.531 0.494 1.674 0.481 1.2177 ±0.070 1.5917 ±0.006 1.5364 ±0.024

22 Crates1Htxtr2 1.106 0.693 1.640 0.548 0.6741 ±0.056 0.8596 ±0.068 0.6974 ±0.024

24 Crates2Htxtr1 3.128 10.210 8.805 0.809 1.3330 ±0.049 0.8808 ±0.032 0.7994 ±0.023

26 Brickbox1t1 1.094 0.394 0.228 2.602 0.3179 ±0.010 0.3425 ±0.001 0.3185 ±0.008

29 Brickbox2t2 7.478 1.827 2.192 3.505 2.8284 ±0.087 1.5644 ±0.092 1.4889 ±0.058

30 GrassSky0 2.102 2.484 1.317 1.039 1.3662 ±0.015 1.2335 ±0.017 1.2266 ±0.029

39 GrassSky9 0.722 0.438 0.273 0.510 0.3273 ±0.005 0.3095 ±0.004 0.3154 ±0.001

49 TxtRMovement 3.166 0.241 0.132 0.356 0.4489 ±0.040 0.2112 ±0.009 0.2321 ±0.012

50 TxtLMovement 1.521 0.282 0.126 0.604 0.3596 ±0.010 0.3231 ±0.058 0.2317 ±0.039

51 blow1Txtr1 0.085 0.050 0.027 0.081 0.0387 ±0.001 0.0509 ±0.004 0.0421 ±0.002

88 blow19Txtr2 0.525 0.380 0.199 0.319 0.2896 ±0.001 0.2970 ±0.004 0.2878 ±0.003

89 drop1Txtr1 0.119 0.071 0.052 0.084 0.0551 ±0.002 0.0723 ±0.001 0.0570 ±0.001

106 drop9Txtr2 5.195 1.985 2.715 4.369 2.8761 ±0.055 3.0909 ±0.038 3.0783 ±0.022

107 roll1Txtr1 0.004 0.005 0.002 0.002 0.0029 ±0.000 0.0028 ±0.000 0.0033 ±0.000

124 roll9Txtr2 0.040 0.048 0.014 0.023 0.0249 ±0.001 0.0254 ±0.001 0.0240 ±0.000

125 street1Txtr1 3.647 3.585 4.097 2.664 3.0637 ±0.025 2.8310 ±0.060 2.6332 ±0.013

Mean EPE 1.6070 1.5312 1.4432 1.1419 0.9887 0.9574 0.8888

Rank 2.100 2.267 1.633

Wins 10 7 13

Num Nodes 9257 758 9336

Train Time (mins) 12.08 17.14 83.78

Test Time (mins) 0.03 0.01 0.02

Table 3. End Point Error (EPE) results for optical flow experiments for four different specialists: TV [29], FL [27], CN [21] and LD [7]

are displayed in the center, and the different forest based algorithms that choose between them for each pixel are on the right.



of 20, the results do not improve substantially. For further

illustrated results, please see our supplementary material.

6. Conclusion

We have presented a novel impurity measure for tree

based classifiers for example dependent cost-sensitive clas-

sification. Our classifier retains all the advantages of tree

classifiers such as fast test time, ease of implementation,

inherent multi-class classification, and probabilistic output.

We have shown that posing tracking, descriptor selection,

and optical flow estimation as cost-sensitive classification

tasks usually results in better test time performance when

compared to standard classification trees. In the case of op-

tical flow estimation, our new impurity measure achieves

a 10% and 7% improvement in flow accuracy over classi-

fication and an alternative ensemble of cost-sensitive trees

respectively. Crucially, by exploiting all the task score data

available at training time, we can build more representative

classifiers that better generalize at test time.

These benefits come at the expense of moderately in-

creased training times, though still better than support-

vector-based methods. Other opportunities for future im-

provements exist. For example, the functions for mapping

algorithm errors to task scores have not been optimized for

the three domains tested so far. Also, for problems like flow

or tracking, inference could be performed jointly instead of

choosing an algorithm independently for each pixel. Fi-

nally, it would be interesting to apply this model to other

classes of vision algorithms.
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