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Abstract

Given a set of algorithms, which one(s) should you apply

to, i) compute optical flow, or ii) perform feature matching?

Would looking at the sequence in question help you decide?

It is unclear if even a person with intimate knowledge of

all the different algorithms and access to the sequence itself

could predict which one to apply. Our hypothesis is that the

most suitable algorithm can be chosen for each video au-

tomatically, through supervised training of a classifier. The

classifier treats the different algorithms as black-box alter-

native “classes,” and predicts when each is best because of

their respective performances on training examples where

ground truth flow was available.

Our experiments show that a simple Random Forest clas-

sifier is predictive of algorithm-suitability. The automatic

feature selection makes use of both our spatial and tempo-

ral video features. We find that algorithm-suitability can be

determined per-pixel, capitalizing on the heterogeneity of

appearance and motion within a video. We demonstrate our

learned region segmentation approach quantitatively using

four available flow algorithms, on both known and novel

image sequences with ground truth flow. We achieve perfor-

mance that often even surpasses that of the one best algo-

rithm at our disposal.

1. Introduction

Standard data sets help us measure overall progress for

specific computer vision challenges such as object recog-

nition, stereo, feature description, and optical flow. Data

sets with good variety help highlight both generalist “win-

ners,” and special-purpose algorithms with winning strate-

gies for specific situations. These evaluations are useful for

researchers planning a new strategy, but practitioners can

have trouble capitalizing on these rankings. A practitioner

looks to these scores when picking which algorithm to trust

for processing a new set of images. We propose a meta-

algorithm, that saves the practitioner from this forced deci-

sion, and balances the advantages of generalist vs. special

purpose algorithms.

To a limited extent, each algorithm could be used to self-

assess its own performance, as is typically done for stereo

and optical flow. Most algorithms seeking to optimize a

non-convex energy term at test time, know only that once

converged, a local minimum has been reached. The room

for doubt increases if multiple algorithms, whether com-

peting or collaborating, are solving the same problem us-

ing different energy functions or priors. Each “expert” will

be satisfied, reporting with its own confidence that it has

reached an optimum. Our proposed approach addresses sit-

uations in general, where some form of gold standard is

available in a training stage, but not at test time.

One example of such situations, and the one we use

throughout this paper as a test case for our meta-algorithm,

is the optical flow problem. To solve this task, we consider a

set of k constituent algorithms working in parallel, and treat

them as black boxes. Although it is difficult or expensive

to obtain ground truth flow data, just enough is available

([2], [14]) to allow some supervised training. We do not

train a linear gold standard measure of success that would

calibrate the different algorithms’ confidences against each

other globally, or pairwise like [24]. Instead, we seek out

the correlation between good performance by a constituent

algorithm, and specific local situations that can be discerned

statistically from the image sequence.

(A) (B) (c)

Figure 1. Per-pixel segmentation results. A) The first image from

a two frame sequence (#18 Sponza1) which is processed as test in-

put to our pre-trained classifier. B) The classifier segments the

image, predicting where each of the four algorithms should give

the most accurate estimate of optical flow. Color-coding of the

pixels indicates the predicted class i.e. algorithm: red=BA [4],

green=TV [26], yellow=HS [12], and blue=FL [27]. C) The

end-point error for the predicted flow. While the average end-point

error based on our prediction does not reach the optimal possible

score (0.988 vs. 0.762 pixels), it outperforms the single best algo-

rithm (TV) at our disposal (1.006 pixels).
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The semantic segmentation community has been devel-

oping successful techniques to find correlations between

object-classes and appearance (e.g. [10] and [8]). We pose

our algorithm-suitability problem as a form of “semantic”

segmentation, where the best meaning or label to associate

with a given pixel is the algorithm that is predicted to yield

the best accuracy. We assume that implementations of all

the algorithms under consideration are available, and that

instead of speed, accuracy is the only relevant objective.

Recognizing that not all flow algorithms have been ported

to leverage GPU processing, we accept the fixed cost of

running all of them on a given sequence as acceptable, in

pursuing the highest accuracy. For choosing among opti-

cal flow algorithms (or in a later experiment, descriptor-

matching strategies), we speculated that this choice could

reasonably be correlated with the contents of both images in

a sequence. For this reason, our feature vector is computed

by analyzing both spatial and temporal characteristics.

This research makes the following main contributions:

• a general segmentation framework for learning to sep-

arate pixels by algorithm-suitability,

• improved accuracy for optical flow computed using

known constituent algorithms (see Figure 1), and

• a system for easily producing synthetic ground truth

data for both optical flow and descriptor-matching.

Experiments show that a special case of the new segmen-

tation approach achieves our initial goal of deciding which

algorithm is most suited for which part of a video. We also

demonstrate how our segmentation can be used to classify

which pixels should not be expected to yield accurate opti-

cal flow estimates (or descriptor matches).

2. Related Work

Raykar et al. [19] describe a generic iterative strategy for

computing a standard by which to measure multiple experts,

when no gold standard exists. The technique is an improve-

ment over following the majority vote when some experts

are better than others. Our problem formulation is differ-

ent, however, because we cannot assume that one expert is

consistently better or worse, independent of the image data

being considered.

Learned algorithm selection is shown by Yong et al. [29]

for the specific task of image segmentation. They used an

SVM for learning and performed their experiments on 1000

synthetic images of 2D squares, circles, etc., with additive

noise, demonstrating what is actually online learning for al-

gorithm selection. Working with 14 constituent real-time

tracking algorithms, Stenger et al. [24] developed a learn-

ing framework that trained the expected error of each al-

gorithm, given its confidence values. Then during testing,

the best-performing pairs of algorithms could be cascaded

or run in parallel to track a hand or head. This approach

is very flexible for situations where one task is being ac-

complished at a time. Alt et al. [1] describe a supervised

learning approach for assessing which planar patches will

be difficult for tracking. Using this pre-selection of reliable

templates they report an improved detection rate for an ex-

isting tracking-by-detection system.

Our situation is different in that various image regions

need attention from different algorithms simultaneously.

The region-segmentation and labeling of Shotton et al. [23]

is a closer fit to our needs for dense and parallel k-way clas-

sification. Where they have color features as the input data,

we use a bank of spatiotemporal features, and their learning

algorithm was a forest of extremely randomized trees [9],

while we use the simple Random Forests of [5].

Muja and Lowe [18] have presented a unique approach

to algorithm-selection, that is quite valuable in the context

of feature matching and beyond. Similar to us, they argue

that algorithm-suitability is data-dependent. Their system

searches a parameter space, where the algorithm itself is

just one of the parameters, to find an approximate nearest-

neighbor strategy (algorithm and settings). The automati-

cally determined strategy is based on the target data itself,

such as a database of SIFT descriptors [15], and desired

preferences for optimizing lookup speeds versus memory.

There, the training data is the same as the test data, so their

optimization is deterministic, while our algorithm suitabil-

ity must be learned, so we can predict which segments are

suited for which strategy, just by looking at a video.

Optical Flow Of the existing approaches to computing

optical flow, the iterative FusionFlow [13] is still very dif-

ferent technically, but the closest to our approach in terms

of its philosophy. They compute a discrete optimization on

continuous-valued flow-fields (with another continuous op-

timization “clean-up”), by performing a minimal cut on an

extended graph. The extended graph consists of auxiliary

binary-valued labels to represent either accepting a newly

proposed flow vector at that location, or keeping the current

flow estimate. The similarity to our work is that in each

such iteration of FusionFlow, the new proposed solution

could be viewed as a competing strategy or algorithm, offer-

ing a potentially lower energy than the current estimate, at

least in some spatial neighborhood. Both algorithms benefit

from good proposed solutions, but the benefits for our algo-

rithm are more direct (see Section 3.1) and we have no flow-

specific pre- or post-processing. FusionFlow is quite flex-

ible and could potentially be modernized with more com-

petitive starting-proposals than the 200+ based on Lucas-

Kanade [16] and Horn and Schunk [12], but the authors in-

dicate that because of their energy function, the computed

minimum eventually gives a score extremely close to the en-

ergy of the ground truth solution (e.g. E = 1613 vs. 1610).



One advantage of our approach is that no one energy func-

tion need be employed universally throughout an image se-

quence.

A thorough understanding of existing energy functions

allowed Bruhn et al. [6] to formulate a new Combined

Local-Global (CLG) method, aptly named “Lucas/Kanade

Meets Horn/Schunk”. Their new 2D energy term (and its

3D variant) combined the local robustness to noise offered

by algorithms such as Lucas-Kanade [16], with the regular-

ized smoothness and dense flow of global algorithms, such

as Horn and Schunk [12]. This approach is still one of the

top performers for the Yosemite sequence. Also, they com-

pute a confidence criterion based on this new energy term,

and demonstrate that it is partly correlated with actual ac-

curacy. The challenge they describe has been one of our

driving motivations, namely, that one has few if any reli-

able confidence measures, beyond the chosen energy func-

tion itself. That problem is compounded when comparing

multiple algorithms with different energy-minimization ob-

jectives.

The nonparametric FRAME model of Zhu et al. [30] op-

timized its texture synthesis by picking out filters from a

filter bank, whose responses are correlated with neighbor-

hoods in the training image. That approach is very flex-

ible, adaptively using potentially many filters, including

non-linear ones which filter large sub-images. Since then,

Roth and Black’s Fields of Experts (FoE) [21] has gained a

following by augmenting FRAME, extending Markov ran-

dom fields with the capability to learn filters that model lo-

cal field potentials. The completely data-driven nature of

FoE is very attractive, and Woodford et al. [28] showed

a method that trains with 5x5 cliques in a comparatively

short time. Roth and Black have further demonstrated FoE

for the purpose of modeling an optical flow prior [20]. In

[20], they used range-images of known scenes with sepa-

rately obtained real camera motions to learn a model of mo-

tion fields, which are different from optical flow. Here, they

still had to manually monitor convergence of the learning,

but in testing, demonstrated superior results using these spa-

tial statistics as priors for the aforementioned 2D Bruhn et

al. [6] flow algorithm. FoE’s expert functions are less flex-

ible than the FRAME model by design: they can be non-

linear, but need to be continuous, and the log of an expert

has to be differentiable with respect to both the expert’s pa-

rameters and the (necessarily) linear filter responses. For

our task however, non-linear “filters” are used for comput-

ing posteriors (see Section 4).

Sun et al. [25] adapted their spatial FoE model of op-

tical flow, learning a relationship between image and flow

boundaries, this time with a parameterization of spatiotem-

poral brightness inconstancy. The steered model of flow and

the generalized data term are learned on the painstakingly

prepared ground truth flow data of Baker et al. [2]. In our

experiments, we too train on this data and also have no need

for sequence-specific parameter tuning, and we achieve bet-

ter scores simply by virtue of leveraging multiple black-box

algorithms that are effective in their own right.

An important result of the FoE line of research is the

finding, that with careful optimization procedures, a good

generalist algorithm’s priors about local responses to lin-

ear filters should be learned from representative training

data. Different low-dimensional “experts” in this setting

are not unique algorithms, but are instead measures, being

combined to model high dimensional probability distribu-

tions of parameterized statistics. Our goal is much sim-

pler, non-parametric, and complementary: to establish the

discriminability between visual situations given competing

strategies or algorithms, in this case, for computing optical

flow. For example, the algorithms with FoE-based priors

trained with different sized cliques (5x5 for [20], 9x9 for

[25]) could be evaluated as different strategies in our frame-

work.

The online Middlebury Optical Flow Evaluation [2] cur-

rently ranks over 30 algorithms. To test our hypothesis, we

need a set of these as constituent algorithms, where they

each have at least some unique properties. For simplicity,

we chose the four algorithms for which an author’s imple-

mentation was most readily available: Werlberger et al.’s

FlowLib [27], Wedel et al.’s TV-L1-improved [26], Black

and Anandan [4], and Horn and Schunck [12]. For brevity,

we will refer to them as FL, TV, BA, and HS, respectively.

3. Algorithm-Selection as Segmentation

The applicability of most algorithms is situation-specific,

and we wish to classify those situations automatically. In-

terest point detectors, such as Good Features to Track [22]

or Harris-Stephens corners [11], are already a form of bi-

nary segmentation for algorithm-selection purposes. Local

neighborhoods are labeled as either regions of interest or

not, depending on their appearance in one frame. Such seg-

mentations have the expectation that only certain regions

can be reliably tracked or matched in subsequent frames.

We expand on this binary algorithm-suitability philos-

ophy with a probabilistic formulation that allows for a k-

way pairing: accuracy should be improved if each part of

an image sequence is handled by the most suitable of k al-

gorithms. The proposed approach is most appropriate in

situations where either no good single algorithm exists, or

where a generalist algorithm makes mistakes in places that

some specialist algorithm does not. Ideally, we could dis-

cern these situations correctly, or could assign a (k + 1)’th
label in places where no algorithm is suitable, producing a

complete segmentation.

To reiterate, the single classifier is taking the place of

the multiple algorithm-specific energy terms or confidence

measures. Being probabilistic, the posteriors of different



classifiers can be compared to each other, which is shown

to be especially useful when k = 2.

3.1. Choice of Learning Algorithm

The classification algorithm for this approach needs to

be multiclass, able to handle large amounts of data, and be

robust to noise. We have selected the Random Forests al-

gorithm developed by Breiman [5]. We also experimented

with Boosted Trees and SVMs and noted slightly worse per-

formance and an increase in training time. Random Forests

is an ensemble of decision trees which averages the predic-

tions of the trees to assign the class labels. It makes use

of bagging to uniformly sample (with replacement) subsets

from the dataset to train the decision trees. It then uses the

remaining data to estimate the error for that particular tree.

During training, each node in the tree is presented with a

random subset of the feature vector. Random Forests have

the advantage of being fast to train and inherently paralleliz-

able. Additionally, they can handle large datasets and also

estimate the importance of the input variables. Caruana et

al. [7] provide a thorough evaluation of Random Forests on

high dimensional data.

4. Available Features

Algorithm selection is posed as a standard supervised

learning problem with training data of the form:

D = {(xi, ci)|xi ∈ R
d, ci ∈ Z

k}ni=1
(1)

with n being the number of training examples, k the num-

ber of algorithms and d the dimensionality of the feature

vector. When constructing a feature vector for optical flow,

the goal is to include any image features that could be in-

dicative of places where the different algorithms succeed

and break down. Given an image pair I1 and I2 (where

I = f(x, y) is a grayscale image), a feature vector is com-

puted for each pixel in the first image. While certainly not

exhaustive, the following combined single and multi-frame

information used in our prototype feature set already pro-

duces good results:

Appearance: Highly textured regions provide little chal-

lenge for modern optical flow algorithms. By taking

the gradient magnitude of the image it is possible to

measure the level of “texturedness” of a region:

g(x, y, z) = ||∇I1||, (2)

The notation g(x, y, z) indicates that the function is

evaluated at an x, y position and level z in the im-

age pyramid. Additionally, the distance transform is

calculated on edge detected images:

d(x, y, z) = disTrans(||∇I1|| > τ), (3)

The intuition is that image edges may co-occur with

motion boundaries, and the higher the distance from

them, the lower the chance of occlusion. We also ex-

perimented with other appearance features such as the

convolution with banks of Gabor features to capture

neighborhood information. Qualitatively, they did not

contribute to the overall results and so were excluded.

Time: Some flow algorithms can break down at motion

discontinuities. Identifying these regions could be

a cue for improving flow accuracy. One method to

find these regions is to do simple image differencing.

Through experimentation, we found that a more ro-

bust approach was to take the derivative of the pro-

posed flow fields. This is done by taking the mean of

the different candidate algorithms’ flow and calculat-

ing the gradient magnitude in the x and y directions,

tx = ||∇ū|| and ty = ||∇v̄|| respectively.

Photo Constancy: One estimate of confidence for an opti-

cal flow algorithm is to measure the photoconsistency

residual r. This is done by subtracting the intensity in

the second image from the first at the predicted loca-

tion of the pixel. Due to the discrete nature of image

space, we perform bicubic interpolation to interpolate

the intensity values in the second image. The resid-

ual error, measured in intensity, is calculated indepen-

dently for each of the k candidate flow algorithms:

ri(x, y, k) = I1(x, y)−bicubic(I2(x+ui(k), y+vi(k)))
(4)

Scale: Most effective approaches to optical flow estimation

utilize scale space to compute flow for big motions.

With this in mind, all of these features, with the excep-

tion of the residual error, are calculated on an image

pyramid with z = [1, 10] levels and a rescaling factor

of 0.8.

The result for optical flow is a 44 dimensional feature vector

xi, computed for each of the pixels in the first image:

xi = {g(x, y, [1, 10]), d(x, y, [1, 10]), tx(x, y, [1, 10]),

ty(x, y, [1, 10]), r(x, y, [1, k])} (5)

5. Synthetic Data

Several techniques have been proposed to generate

ground truth optical flow data from real image sequences.

The popular Middlebury optical flow dataset approximated

flow by painting a scene with hidden fluorescent texture and

imaging it under UV illumination [2]. The ground truth flow

is then computed by tracking small windows in the high res-

olution UV images, and performing a brute-force search in

the next frame. The high resolution flow field is then down-

sampled to produce the final ground truth. This technique,



while successful, is extremely time consuming and restric-

tive in the types of scenes that can be captured (restricted to

lab environments). Liu et al. [14] use human assistance to

annotate motion boundaries in image sequences as a prepro-

cessing step for layer-wise optical flow estimation. While

this approach is more practical, it still relies on the accuracy

of the flow estimation algorithm used.

Synthetically generated sequences have been used as an

alternative to natural images for optical flow evaluation

since the introduction of the famous Yosemite sequence

by Barron et al. [3]. These have the advantage of be-

ing quick to generate and can benefit from advances in

computer graphics to create highly realistic scenes. Using

complex geometry, detailed texture, and global illumination

techniques, it is now possible to generate realistic sequences

with consumer 3D computer graphics packages. Currently

there is no publicly available way to generate ground truth

data of high resolution photo-real synthetic images.

We have developed a plugin for Maya which allows the

user to generate ground truth optical flow for a given image

pair. An example output of the system is shown in Figure 2.

The system works by casting a ray from the camera center,

through the image plane and into the scene until it intersects

an object. Then, this point is projected back into the second

camera (respecting occlusions in the scene) and the optical

flow is calculated from the position difference with respect

to the first image plane. An advantage of the system is that

the texture and lighting of the scene is independent of the

geometry. This creates the possibility for re-rendering the

same scene using different illumination and textures, with-

out altering the ground truth. As the system calculates in-

tersections between projected rays and scene objects, occlu-

sions are noted and therefore not erroneously labeled with

incorrect flow (black regions in Figure 2). Additionally,

there is no restriction on camera baseline or object motion

and the same system can create data for image descriptor

evaluation. The generated sequences and the software to

create additional ground truth optical flow for experiments

is available online.

6. Experiments

Optical Flow In all the experiments, we used the same

learning system described in Section 3.1, and unless oth-

erwise stated, k = 4, so we are predicting which one of

the four constituent optical flow algorithms (BA, TV, HS,

FL) to trust at each pixel. The algorithms were used with

their default or most-successful published settings, though

in practice, the same algorithm with different parameters

could be treated by our meta-algorithm as distinct classes.

For comparison purposes, we designed a baseline hybrid

from our own experiences of using these algorithms. Hav-

ing analyzed the results of the four algorithms on all eight

Middlebury training sequences, we noted in particular the

(A) Frame One (B) Ground Truth Flow

Figure 2. Unlimited Ground Truth Optical Flow Data A) Exam-

ple frame from a two frame sequence (#9 Crates1), generated by

our system. The scene was modeled in Maya and rendered using

Mental Ray to include global illumination. B) Ground truth opti-

cal flow between the two frames. The flow field color is displayed

inset and coded using the same format as [2]. Black values in the

flow image indicate areas of occlusion between the two frames.

performance for areas of low and high texture, and motion

discontinuities. While FL performs the best overall, BA was

the best in areas of high texture. Texture is measured sim-

ply by thresholding the gradient magnitude of the image,

||∇I1|| > t, and dilating the result with a 5 pixel ball struc-

turing element to mask which pixels would be associated

with “class” BA. With a threshold of t = 10, the new algo-

rithm, called the Trivial Combination (TC), was also used

in our tests.

We used image pairs with ground truth flow from three

sources: the eight Middlebury training sequences [2], two

Middlebury-like sequences from [25], and nine of our own

challenging synthetic sequences, for a total of 19. In line

with the evaluation of [2], the reported scores are the av-

erage end point error across the whole image. The error is

not reported for areas known to have no flow, and for a 10

pixel boundary region around the edge of the image. Ta-

ble 1 lists the main results for our algorithm, and additional

illustrations of the performance of the different learning pa-

rameter settings are in the Supplemental Materials, as are

qualitative results of flow computed on real images without

ground truth.

Leave-one-out tests were performed to make the best use

of available training data. Due to the redundancy present

when multiple algorithms could give the correct flow for a

pixel, we pre-select a subset of the available data on which

to train. We only train on examples where the end point er-

ror between the best performing algorithm and the second

best for a particular pixel is greater than a threshold of 0.3

pixels. This reduces the amount of training data but also

allows the selection of examples which are most discrim-

inative. It also prevents training on areas of similar error.

The trained forest reveals feature usage that is almost equal

throughout the feature vector. Balanced usage of features

indicates that none of our available features is especially

better or worse than the others.



We did a separate experiment to compute our results

on the Middlebury test sequences. We trained our system

on just the eight Middlebury sequences, and our reported

end point errors are as follows, Army: 0.1, Mequon: 0.35,

Schefflera: 0.63, Wooden: 0.22, Grove: 0.91, Urban: 0.62,

Yosemite: 0.15, and Teddy: 0.74. These results place us

between “Occlusion bounds”’ and “Multicue MRF” on the

online Middlebury table, which means we appear to outper-

form BA and HS, but not TV or FL on that data set. This

shortfall compared to two of our constituent algorithms is

surprising, though our implementations of FL and TV are

known to differ from those used in the competition. Inter-

estingly, we currently outperform the FoE and other hybrid

algorithms described in Section 2.
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Figure 3. FL Decision Confidence. Left) the top figure shows the

ROC curve of confidence in FL’s optical flow for computing a pixel

flow of less than 1 end point error for the Urban2 sequence. The

bottom left figure shows that by choosing a high probability, the

average end point error is kept low, at the expense of the number

of pixels where flow was estimated. The classifier allows the user

to trade off error versus coverage. Right) on the top, the same

confidences are plotted spatially, revealing high uncertainty near

object discontinuities and at the image boundaries. The bottom

plots the true FL end point error for all pixels.

Another test of our hypothesis involved trying the k = 2
case, where one algorithm is the leading optical flow strat-

egy in our cohort, FL, and the other “strategy” is to not

report flow for a given pixel, expressly avoiding making

a flow estimate whose error is anticipated to be too big (1

pixel end point error in this case). A perfect classifier would

only assign the FL label to pixels that would be estimated

to within one pixel of the true vector. This test was also

done as leave-one-out from our set of 16 sequences, and the

plot of the Urban2 sequence in Figure 3 is a representative

of the other tests. The main benefit of this binary classifier

is that the confidence is now measured as the probability of

computing a pixel flow of less than 1 pixel end point error.

Had we used the algorithm’s own energy function, the con-

fidence could not be directly compared to a similar binary

classifier for each other flow algorithm.

Our unoptimized code for the classifier is implemented

in C, though features and other visualization functions are

computed in MATLAB. Running on an Intel Core 2 Quad

2.4Ghz with 3.25Gb RAM, computing all the flow esti-

mates takes approximately 5min. for the 640x480 images

we tested, and generating the feature vector takes another

1 min. Random Forest takes 1hr 15mins to train on all our

data in the leave-one-out experiments. However, once it is

trained and the features are computed, it takes on the order

of seconds to compute a prediction.

Feature Matching Using the same self evaluation strat-

egy as in optical flow, we conducted an experiment on fea-

ture matching. We trained our algorithm on images from

nine different scenes, ranging from two to 10 images per

scene. The images are made up of sequences from Miko-

lajczyk’s [17] dataset and our own synthetically generated

training images. The scenes exhibit changes due to rota-

tion, scale, image blur, affine transformation, illumination

and large viewpoint changes. 65,000 interest points were

extracted using the Harris-Hessian-Laplacian interest point

detector and described using the SIFT algorithm. For each

SIFT descriptor, a feature vector was computed, consist-

ing of the Euclidean distance ratios between the first four

closest matched features in the second images and in the

same image. The intention of using this self similarity mea-

sure was to reduce false positives due to repeating struc-

tures. For the scenes from Mikolajczyk, ground truth corre-

spondence is provided by a homography relating each im-

age pair. For our synthetic data, we have the ground truth

correspondences by virtue of our system. Correspondence

is measured against the nearest neighbor distance ratio test

of Lowe [15]. Normally, given two features from separate

images, they are considered a match if the distance ratio be-

tween the first and second closest features is below a thresh-

old and the position of the feature in the second image is

less than 1.5 pixels from the ground truth. Mikolajczyk also

use a region overlap error to verify that the descriptors are

describing the same area in the images, but due to the large

viewpoint changes present in our data, this is not applica-

ble. We tested our classifier on 5000 features from the graf-

fiti sequence [17]. Figure 4 shows the ROC curve obtained

by sweeping the probability given by the classifier. It also

displays the performance of SIFT matching by varying the

distance ratio threshold t. The curve shows that the classi-

fier outperforms the standard SIFT matching criterion.

7. Conclusions

The results of the learning experiments indicate that at

least for optical flow and feature matching, it is indeed pos-



Image Sequence BA TV HS FL TrivComb Ours OptCombo

1 Venus 0.445 0.408 0.549 0.350 0.387 0.344 0.271

2 Urban3 0.892 1.132 1.329 0.527 0.589 0.603 0.398

3 Urban2 0.552 0.506 0.772 0.435 0.428 0.436 0.256

4 RubberWhale 0.148 0.135 0.182 0.096 0.133 0.097 0.074

5 Hydrangea 0.217 0.196 0.276 0.164 0.191 0.165 0.123

6 Grove3 0.705 0.745 0.873 0.622 0.670 0.628 0.466

7 Grove2 0.197 0.220 0.285 0.170 0.189 0.171 0.111

8 Dimetrodon 0.161 0.211 0.171 0.144 0.147 0.147 0.115

9 Crates1* 4.439 3.464 5.195 3.724 4.582 3.748 2.448

10 Crates2* 17.517 4.615 17.891 12.634 17.634 9.607 3.373

11 BrickBox1* 7.059 7.025 7.129 6.748 7.045 6.791 6.606

12 BrickBox2* 21.820 21.868 21.643 22.333 21.784 21.9 20.925

13 Mayan1* 2.186 2.331 2.702 0.709 2.177 1.833 0.443

14 Mayan2* 0.449 0.442 0.876 0.344 0.389 0.342 0.212

15 YosemiteSun 0.221 0.310 0.267 0.250 0.221 0.252 0.186

16 GroveSun 0.624 0.576 0.683 0.403 0.474 0.437 0.368

17 Robot* 8.55 8.959 8.443 8.607 8.52 8.612 8.11

18 Sponza1* 1.06 1.006 1.281 1.021 1.057 0.988 0.762

19 Sponza2* 0.436 0.496 0.464 0.473 0.456 0.467 0.296

0 20 40 60 80

BA

TV

HS

FL

Ours

Total Epe

57.56

59.75

71.01

54.66

67.68

Table 1. Leave-1-Out Tests Results of leave-one-out end-point pixel error testing of flow with 19 image pairs. Sequences marked with an

asterisk were generated as described in Section 5. Rows show how each optical flow algorithm fared on a given test-sequence: BA=Black

and Anandan [4], TV=Wedel et al.’s TV-L1-improved [26], HS=Horn and Schunck [12], FL= Werlberger et al.’s FlowLib [27], Triv-

Combo= our baseline hybrid, Ours= our proposed meta-algorithm, and OptCombo= the lowest error attainable with a discrete combination

of all four constituent algorithms. The lowest error for each sequence, excluding the optimal, is highlighted in bold.
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Figure 4. SIFT Decision Confidence. Left) ROC curve show-

ing the result of classification for self evaluation for SIFT feature

matching. The classification approach performs better than stan-

dard SIFT matching strategies that rely simply on a distance ratio,

e.g. 0.8. Right) The figure shows the number of correct features

matched as the probability from the classifier is increased. It can

be seen from the diagram that a conservative threshold on the prob-

ability would result in fewer matches.

sible to estimate a correct classification of pixels based on

algorithm suitability. Here, optimally correct classification

would mean that any segments with the same class label will

be best handled by that one-among-k available algorithms.

While our predictions about where to use each constituent

algorithm only approximate that optimal labeling, we show

that on average, results based on our labeling often outper-

form even a universally-good constituent algorithm work-

ing individually.

Algorithms for both the tasks we examined, flow and de-

scription, have various criteria for assessing their own per-

formance or confidence. One of the benefits of the pro-

posed framework, at least for practitioners, is that instead

of using algorithm-specific heuristics, the goal itself is used

with training data, to learn a unified “success classifier.” In

practice, this means that parts of an image sequence can be

identified and excluded automatically and more adaptively,

when deemed too hard. This approach applies even to the

k = 1 case, squeezing more accuracy out of the already

good FlowLib and SIFT algorithms.

A secondary contribution of this work is our new sys-

tem for synthesizing image sequences, producing ground

truth suitable for both optical flow and feature description

experiments. We are releasing this system for general use to

aid research where algorithms could benefit from extended

training data. By leveraging existing tools in the computer

graphics community, each scene with potentially complex

geometry and motion can have one set of ground truth cor-

respondences, while rendering endless variants of the image

sequence by changing the lighting and textures. We provide

code to run the experiments in this paper, code for gener-

ating synthetic data, and sample data on our website. We

hope that that this encourages experiments using new and

unusual constituent algorithms.

7.1. Limitations & Future Work

While the proposed meta-algorithm can produce better

results than the constituent algorithms alone, limitations and

new challenges have come to light. The optimal labelings

clearly exist, but still elude us. One hope is that further

meaningful correlations between the input data and the class

labels could be discovered by expanding the variety of fea-

tures available to the classifier, beyond those proposed in



Section 4.

Building our classifier on a standard Random Forest has

proven advantageous in many ways, but limits the utility of

some of the training data. As with most discrete multi-class

classifiers, each training example specifies that one algo-

rithm is most-suitable, while the rest are equally unsuitable.

This effectively ignores the fact that, for optical flow for

example, the second-best algorithm could give an end-point

estimate 10 times closer than the fourth-best. Equally, when

the difference between the top two algorithms is minimal,

our current system is forced to either ignore the example

completely, or expend effort trying to learn to distinguish

between equals.

We chose to validate our hypothesis mostly on the ex-

ample application of optical flow. There are many other

applications, such as stereo, where multiple competing al-

gorithms vie to be universally best, and it would be interest-

ing to try our learned segmentation approach there. Ran-

dom Forests can handle more than five or six classes in

general, but exactly how far our approach will scale is un-

clear. A particular goal for the future would be the devel-

opment of new specialist algorithms, which would be terri-

ble on their own, but could nicely complement the general-

ist algorithms. Our experiments here were designed to be

most-faithful to the state-of-the-art, so we simply included

the four algorithms for which the authors’ implementations

were immediately available.

Finally, our approach ignores the cost of processing

times, which is currently acceptable, but O(k) in the num-

ber of algorithms under consideration. One strategy could

be to optimize the forest subject to the computational cost

of each algorithm. Overall, the proposed method learns to

segment by algorithm-suitability through analyzing features

in two frames at a time, which could be used intermittently

for long sequences if faster processing is required.
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