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Which algorithm should | (use /
download / implement) to track
things in this video?




The Optical Flow Problem

= #2 all-time Computer Vision problem (isputable)

= “Where did each pixel go?”



Optical Flow Solutions

= Compared against each other on the “blind”
Middlebury test set
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1 St BeSt Algo rith m (7t overall as of 17-12-2009)

DPOF [18]: C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-
trees using discrete optimization. ICCV 2009

Color encoding  Teddy - Classic+Area flow Teddy - Classic+Area flow error
of flow vectors



http://www.cs.ualberta.ca/~yang/motion.htm
http://www.cs.ualberta.ca/~yang/motion.htm

(3 overall as of 17-12-2009) an BeSt Algo rith m

Classic+Area [31]: Anonymous. Secrets of optical flow estimation and their principles.
CVPR 2010 submission 477

Color encoding  Teddy - DPOF flow Teddy - DPOF flow error
of flow vectors




Should use
algorithm A

Should use
algorithm B
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Algorithm A

T el

lsorithm B

(Artistic version; object-boundaries don’t interest us)



Hypothesis:

= that the most suitable algorithm can be chosen
for each video automatically, through
supervised training of a classifier



Hypothesis:
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= that one can predict the space-time segments
of the video that are best-served by each
avallable algorithm

= (Can always come back to choose a per-frame or
per-video algorithm)



Experimental Framework

Groundtruth labels

e I

Feature Learning algorithm
extraction

Trained Estimated class

classifier labels




Experimental Framework

Groundtruth labels gk --i
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Experimental Framework

Groundtruth labels gk --i
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Random Forests
Breiman, 2001



Experimental Framework




“Making” more data




Formulation
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= Training data ~ consists of feature vectors X
and class labels c (i.e. best-algorithm per pixel)

= Feature vector x 1s multi-scale, and includes:
= Spatial Gradient
= Distance Transform
= Temporal Gradient
= Residual Error (after bicubic reconstruction)



Formulation
D = {(X,¢i)[x; € Rdaci < Zk}?:l
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= Training data ¢

and class labels c g(x,y, Z) — ||V[1 ||

= Feature vector X | n A———
= Spatial Gradient
= Distance Transform
= Temporal Gradient
= Residual Error (after bicubic reconstruction)



Formulation
D = {(X,¢i)[x; € Rdaci < Zk}?:l

X, = {g(.x,}% [l ,z]),d(I,}-’, [l ,d)rrr(-xe}’a “ 33]),&(1,}’, [l ,ED,F(I,}-’, [l/‘])}

d(x,v,z) =disTrans(||VI|| > 1)

= Spatial Gradient
= Distance Transform
= Temporal Gradient
= Residual Error (after bicubic reconstruction)



Formulation Details
= Temporal Gradient

te = ||V (x+a)

ty =||V(y+V)

= Residual Error
ri(x,y,k) =1I1(x,y) — bicubic(Lh(x+ u;(k),y +vi(k)))



Application I: Optical Flow
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Application ll: Feature Matching



Comparing 2 Descriptions

= What 1s a match? Details are important...
= Nearest neighbor (see also FLANN)
= Distance Ratio

= PCA
= Evaluation: density, # correct matches, tolerance

—



http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
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ROC Curve Scene 17
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Hindsight / Future Work

= Current results don’t quite live up to the theory:

= Flaws of best-algorithm are the upper bound (ok)
= Training data does not fit in memory (fixable)

= “Winning” the race is more than rank (problem!)



Summary

= Overall, predictions are correlated with the best
algorithm for each segment (expressed as Pr!)

= Training data where one class dominates is
dangerous — needs improvement

= Other features could help make better predictions
= Results don’t yet do the 1dea justice

= One size does NOT fit all

= At least in terms of algorithm suitability
= Could use “bad” algorithms!
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Ground Truth Best Based on Prediction



FlowLib Based on Prediction

White = 30 pixel end point error



FlowLib Based on Prediction

(Contrast enhanced)



